Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition

We show, using the spectral Galerkin method together with compactness arguments, existence and uniqueness of the periodic strong solutions for the magnetohydrodynamics's type equations with inhomogeneous boundary conditions. Also, we study the asymptotic stability for time periodic solution for this system. In particular, when the magnetic field h(x,t) is zero, we obtain existence, uniqueness and asymptotic behavior of the strong solutions to the Navier-Stokes equations with inhomogeneous boundary conditions.

[1]  Hitoshi Tanaka,et al.  Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces , 2014 .

[2]  On the magnetohydrodynamic type equations in a new class of non-cylindrical domains , 1999 .

[3]  Eduardo A. Notte,et al.  PERIODIC STRONG SOLUTIONS OF THE MAGNETOHYDRODYNAMIC TYPE EQUATIONS , 2002 .

[4]  Global strong solutions of equations of magnetohydrodynamic type , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[5]  Sadek Gala,et al.  A remark on the regularity criterion of Boussinesq equations with zero heat conductivity , 2014, Appl. Math. Lett..

[6]  Jacques Simon,et al.  Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .

[7]  Vivette Girault,et al.  On the existence and regularity of the solution of Stokes problem in arbitrary dimension , 1991 .

[8]  G. Lassner Über ein rand-anfangswertproblem der magnetohydrodynamik , 1967 .

[9]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[10]  H. Alfvén,et al.  Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.

[11]  T. A. Burton,et al.  Stability and Periodic Solutions of Ordinary and Functional Differential Equations , 1986 .

[12]  H. Kato Existence of Periodic Solutions of the Navier–Stokes Equations☆ , 1997 .

[13]  Teppei Kobayashi Time Periodic Solutions of the Navier-Stokes Equations under General Outflow Condition , 2009 .

[14]  D T Swift-Hook,et al.  Partially Ionized Gases , 1975 .

[15]  J. Serrin A note on the exstencie of periodic solutions of the Navier-Stokes equations , 1959 .

[16]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[17]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[18]  Qiao Liu,et al.  A new regularity criterion for the nematic liquid crystal flows , 2012 .

[19]  Chang-Yeol Jung,et al.  On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations , 2017, Numerische Mathematik.

[20]  Survey on time periodic problem for fluid flowunder inhomogeneous boundary condition , 2011 .

[21]  A review on reproductivity and time periodicity for incompressible fluids , 2007 .

[22]  Qiao Liu,et al.  Logarithmically improved regularity criterion for the nematic liquid crystal flows in Ḃ∞, ∞-1 space , 2013, Comput. Math. Appl..