Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition
暂无分享,去创建一个
Marko Antonio Rojas-Medar | Igor Kondrashuk | Eduardo Alfonso Notte-Cuello | Mariano Poblete-Cantellano | M. Rojas-Medar | E. Notte-Cuello | I. Kondrashuk | M. Poblete-Cantellano
[1] Hitoshi Tanaka,et al. Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces , 2014 .
[2] On the magnetohydrodynamic type equations in a new class of non-cylindrical domains , 1999 .
[3] Eduardo A. Notte,et al. PERIODIC STRONG SOLUTIONS OF THE MAGNETOHYDRODYNAMIC TYPE EQUATIONS , 2002 .
[4] Global strong solutions of equations of magnetohydrodynamic type , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[5] Sadek Gala,et al. A remark on the regularity criterion of Boussinesq equations with zero heat conductivity , 2014, Appl. Math. Lett..
[6] Jacques Simon,et al. Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .
[7] Vivette Girault,et al. On the existence and regularity of the solution of Stokes problem in arbitrary dimension , 1991 .
[8] G. Lassner. Über ein rand-anfangswertproblem der magnetohydrodynamik , 1967 .
[9] Yoshikazu Giga,et al. Solutions in Lr of the Navier-Stokes initial value problem , 1985 .
[10] H. Alfvén,et al. Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.
[11] T. A. Burton,et al. Stability and Periodic Solutions of Ordinary and Functional Differential Equations , 1986 .
[12] H. Kato. Existence of Periodic Solutions of the Navier–Stokes Equations☆ , 1997 .
[13] Teppei Kobayashi. Time Periodic Solutions of the Navier-Stokes Equations under General Outflow Condition , 2009 .
[14] D T Swift-Hook,et al. Partially Ionized Gases , 1975 .
[15] J. Serrin. A note on the exstencie of periodic solutions of the Navier-Stokes equations , 1959 .
[16] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[17] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[18] Qiao Liu,et al. A new regularity criterion for the nematic liquid crystal flows , 2012 .
[19] Chang-Yeol Jung,et al. On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations , 2017, Numerische Mathematik.
[20] Survey on time periodic problem for fluid flowunder inhomogeneous boundary condition , 2011 .
[21] A review on reproductivity and time periodicity for incompressible fluids , 2007 .
[22] Qiao Liu,et al. Logarithmically improved regularity criterion for the nematic liquid crystal flows in Ḃ∞, ∞-1 space , 2013, Comput. Math. Appl..