Recent Progress of Promising Cathode Candidates for Sodium‐Ion Batteries: Current Issues, Strategy, Challenge, and Prospects

[1]  Suli Chen,et al.  High Fe LS (C) electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage , 2023, Carbon Energy.

[2]  Xiaobo Ji,et al.  Robust NASICON-type iron-based Na4Fe3(PO4)2(P2O7) cathode for high temperature sodium-ion batteries , 2023, Chemical Engineering Journal.

[3]  Jianing Liang,et al.  Self-templating construction of hollow microspheres assembled by nanosheets with exposed active planes for sodium ion storage , 2022, Nano Research.

[4]  Yongyao Xia,et al.  Progress of Phosphate‐based Polyanion Cathodes for Aqueous Rechargeable Zinc Batteries , 2022, Advanced Functional Materials.

[5]  Zhenxiang Cheng,et al.  A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan. , 2022, Angewandte Chemie.

[6]  Sooyeon Hwang,et al.  Tailoring solid-electrolyte interphase and solvation structure for subzero temperature, fast-charging, and long-cycle-life sodium-ion batteries , 2022, Energy Storage Materials.

[7]  Li Li,et al.  Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies , 2022, Materials Today.

[8]  Xian‐Xiang Zeng,et al.  Bimetal Substitution Enabled Energetic Polyanion Cathode for Sodium-Ion Batteries. , 2022, Nano letters.

[9]  Qinyou An,et al.  Mg‐Doped Na4Fe3(PO4)2(P2O7)/C Composite with Enhanced Intercalation Pseudocapacitance for Ultra‐Stable and High‐Rate Sodium‐Ion Storage , 2022, Advanced Functional Materials.

[10]  Yuliang Cao,et al.  Low‐Cost Zinc Substitution of Iron‐Based Prussian Blue Analogs as Long Lifespan Cathode Materials for Fast Charging Sodium‐Ion Batteries , 2022, Advanced Functional Materials.

[11]  Xing Wu,et al.  From Solid-Solution MXene to Cr-Substituted Na3V2(PO4)3: Breaking the Symmetry of Sodium Ions for High-Voltage and Ultrahigh-Rate Cathode Performance. , 2022, ACS nano.

[12]  Xumiao Chen,et al.  Doping Regulation in Polyanionic Compounds for Advanced Sodium-Ion Batteries. , 2022, Small.

[13]  Zhongwei Chen,et al.  Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials , 2022, Electrochemical Energy Reviews.

[14]  Zhongyuan Huang,et al.  Facilitating both anionic and cationic redox processes in Na-rich layered cathode materials by heteroatomic doping , 2022, Chemical Engineering Journal.

[15]  Yu Cao,et al.  Defect Engineering in Prussian Blue Analogs for High‐Performance Sodium‐Ion Batteries , 2022, Advanced Energy Materials.

[16]  Xing Wu,et al.  Heterogeneous NASICON‐Type Composite as Low‐Cost, High‐Performance Cathode for Sodium‐Ion Batteries , 2022, Advanced Functional Materials.

[17]  H. Fan,et al.  Sodium Ion Storage in Na4MnV(PO4)3@C Free‐Standing Electrode , 2022, Advanced Functional Materials.

[18]  J. Binder,et al.  Prospective Sustainability Screening of Sodium‐Ion Battery Cathode Materials , 2022, Advanced Energy Materials.

[19]  Yongyao Xia,et al.  Pilot-Scale Synthesis Sodium Iron Fluorophosphate Cathode with High Tap Density for a Sodium Pouch Cell. , 2022, Small.

[20]  Hongyang Ma,et al.  Double‐Carbon‐Layer Coated Na4MnV(PO4)3 Towards High‐Performance Sodium‐Ion Full Batteries , 2022, Advanced Materials Interfaces.

[21]  Jiazhao Wang,et al.  Surface chemistry engineering of layered oxide cathodes for sodium‐ion batteries , 2022, Carbon Neutralization.

[22]  Ziheng Wang,et al.  Fluffy-Like Cation-Exchanged Prussian Blue Analogues for Sodium-Ion Battery Cathodes. , 2022, ACS applied materials & interfaces.

[23]  Hongcai Gao,et al.  Progress on Fe‐Based Polyanionic Oxide Cathodes Materials toward Grid‐Scale Energy Storage for Sodium‐Ion Batteries , 2022, Small methods.

[24]  Jiazhao Wang,et al.  Na1.51Fe[Fe(CN)6]0.87·1.83H2O Hollow Nanospheres via Non‐Aqueous Ball‐Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodium‐Ion Batteries , 2022, Small methods.

[25]  Sailong Xu,et al.  Interlocking Biphasic Chemistry for High-Voltage P2/O3 Sodium Layered Oxide Cathode , 2022, Energy Storage Materials.

[26]  Time for lithium-ion alternatives , 2022, Nature Energy.

[27]  Junlin Ma,et al.  Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. , 2022, ACS applied materials & interfaces.

[28]  Weihua Zhang,et al.  Synergistic Effect, Structural and Morphology Evolution, and Doping Mechanism of Spherical Br-Doped Na3 V2 (PO4 )2 F3 /C toward Enhanced Sodium Storage. , 2022, Small.

[29]  T. Chan,et al.  Achieving Reversible Mn2+/Mn4+ Double Redox Couple Through Anionic Substitution in a P2-Type Layered Oxide Cathode , 2022, SSRN Electronic Journal.

[30]  Yuliang Cao,et al.  Effect of Eliminating Water in Prussian Blue Cathode for Sodium‐Ion Batteries , 2022, Advanced Functional Materials.

[31]  Yan Yu Sodium‐Ion Batteries , 2022 .

[32]  Dejun Li,et al.  Homogeneous hybridization of NASICON-type cathode for enhanced sodium-ion storage , 2022, Energy Storage Materials.

[33]  Xing-long Wu,et al.  An Advanced High‐Entropy Fluorophosphate Cathode for Sodium‐Ion Batteries with Increased Working Voltage and Energy Density , 2022, Advanced materials.

[34]  L. Monconduit,et al.  Exploration of a Na3V2(PO4)3/C –Pb full cell Na-ion prototype , 2022, Nano Energy.

[35]  Jing Mao,et al.  Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium‐Ion Battery Electrode , 2022, Small methods.

[36]  D. Yan,et al.  Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. , 2022, ACS nano.

[37]  Xianhua Hou,et al.  NASICON-Structured Na3MnTi(PO4)2.83F0.5 Cathode with high energy density and rate performance for Sodium-Ion Batteries , 2022, Chemical Engineering Journal.

[38]  Qiannan Liu,et al.  Prussian Blue Analogues for Sodium‐Ion Batteries: Past, Present, and Future , 2021, Advanced materials.

[39]  T. Tao,et al.  Manipulating the Phase Compositions of Na3(VO1-xPO4)2F1+2x (0 ≤ x ≤ 1) and Their Synergistic Effects with Reduced Graphene Oxide toward High-Rate Sodium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[40]  Q. Lu,et al.  One-step Multiple Structure Modulations on Sodium Vanadyl Phosphate@Carbon towards Ultra-Stable High Rate Sodium Storage , 2021, Chemical Engineering Journal.

[41]  Wenguang Zhao,et al.  P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries , 2021, Nano Energy.

[42]  Hui-Xia Zhao,et al.  Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives , 2021, Advanced materials.

[43]  Xing-long Wu,et al.  Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Na‐Ion Diffusivity for Sodium‐Ion Batteries , 2021, Advanced Functional Materials.

[44]  Weihong Lai,et al.  Advanced Characterization Techniques Paving the Way for Commercialization of Low‐Cost Prussian Blue Analog Cathodes , 2021, Advanced Functional Materials.

[45]  Yang Yang,et al.  In-situ construction of NaF-rich cathode electrolyte interface on prussian blue toward 3000-cycle-life sodium ion battery , 2021, Materials Today Energy.

[46]  S. Wen,et al.  Insights into the Improved Cycle and Rate Performance by Ex-situ F and In-situ Mg Dual Doping of Layered Oxide Cathodes for Sodium-Ion Batteries , 2021, Energy Storage Materials.

[47]  Shuo Bao,et al.  A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries. , 2021, Journal of colloid and interface science.

[48]  J. Tu,et al.  Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping , 2021, Chemical Engineering Journal.

[49]  Shulei Chou,et al.  Low‐Cost Polyanion‐Type Sulfate Cathode for Sodium‐Ion Battery , 2021, Advanced Energy Materials.

[50]  A. Manthiram,et al.  Surface-Modified Na(Ni0.3Fe0.4Mn0.3)O2 Cathodes with Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries , 2021, ACS Applied Energy Materials.

[51]  Chenghao Yang,et al.  3D Porous Fluorine-Doped NaTi2(PO4)3@C as High-Performance Sodium-Ion Battery Anode with Broad Temperature Adaptability , 2021, Chemical Engineering Journal.

[52]  Enyue Zhao,et al.  Multiple Influences of Nickel Concentration Gradient Structure and Yttrium Element Substitution on the Structural and Electrochemical Performances of the NaNi0.25Mn0.25Fe0.5O2 Cathode Material , 2021, The Journal of Physical Chemistry C.

[53]  Xuehang Wu,et al.  Stabilizing P2-Type Ni-Mn Oxides as High-Voltage Cathodes by a Doping-Integrated Coating Strategy Based on Zinc for Sodium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[54]  Jiaqi Huang,et al.  Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. , 2021, ACS applied materials & interfaces.

[55]  Mao-wen Xu,et al.  Self-Template Synthesis of Prussian Blue Analogue Hollow Polyhedrons as Superior Sodium Storage Cathodes. , 2021, ACS applied materials & interfaces.

[56]  Yaxiang Lu,et al.  Fundamentals, status and promise of sodium-based batteries , 2021, Nature Reviews Materials.

[57]  Xingguo Qi,et al.  Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries , 2021, Nature Communications.

[58]  Jun Lu,et al.  Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage , 2021 .

[59]  Zhongbo Hu,et al.  A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: An effective solution to capacity attenuation , 2021, Electrochimica Acta.

[60]  Chun-hua Chen,et al.  Self-Template Synthesis of NaCrO2 Submicrospheres for Stable Sodium Storage. , 2021, ACS Applied Materials and Interfaces.

[61]  C. Zhi,et al.  Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions , 2021 .

[62]  Xiao‐Qing Yang,et al.  Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance , 2021, Advanced Energy Materials.

[63]  Jiawei Wang,et al.  Tailoring P2/P3 Biphases of Layered Nax MnO2 by Co Substitution for High-Performance Sodium-Ion Battery. , 2021, Small.

[64]  Chenghao Yang,et al.  Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries , 2021 .

[65]  Shao‐hua Luo,et al.  Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries , 2021 .

[66]  Yitai Qian,et al.  Recent Advances and Perspectives of Zn‐Metal Free “Rocking‐Chair”‐Type Zn‐Ion Batteries , 2020, Advanced Energy Materials.

[67]  Jiujun Zhang,et al.  Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage , 2020 .

[68]  P. He,et al.  Engineering sodium-rich manganese oxide with robust tunnel structure for high-performance sodium-ion battery cathode application , 2020 .

[69]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[70]  Yongchang Liu,et al.  A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries , 2020, Science China Chemistry.

[71]  Qian Zhang,et al.  Oriented Formation of a Prussian Blue Nanoflower as a High Performance Cathode for Sodium Ion Batteries , 2020 .

[72]  Guoxiu Wang,et al.  Na‐Ion Batteries—Approaching Old and New Challenges , 2020, Advanced Energy Materials.

[73]  Chenghao Yang,et al.  Dual‐Strategy of Cation‐Doping and Nanoengineering Enables Fast and Stable Sodium‐Ion Storage in a Novel Fe/Mn‐Based Layered Oxide Cathode , 2020, Advanced science.

[74]  W. Chu,et al.  Stepwise Hollow Prussian Blue Nanoframes/Carbon Nanotubes Composite Film as Ultrahigh Rate Sodium Ion Cathode , 2020, Advanced Functional Materials.

[75]  C. Delmas,et al.  The Layered Oxides in Lithium and Sodium‐Ion Batteries: A Solid‐State Chemistry Approach , 2020, Advanced Energy Materials.

[76]  L. Durai,et al.  One-step solid-state reaction synthesis of β-NaFeO2 nanopebble as high capacity cathode material for sodium ion batteries , 2020, Materials Letters.

[77]  KwangSup Eom,et al.  Overcoming the Unfavorable Kinetics of Na3V2(PO4)2F3//SnPx Full‐Cell Sodium‐Ion Batteries for High Specific Energy and Energy Efficiency , 2020, Advanced Functional Materials.

[78]  J. Fransaer,et al.  Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries , 2020 .

[79]  Teng Zhang,et al.  Polyanion-type electrode materials for advanced sodium-ion batteries , 2020, Materials Today Nano.

[80]  Leigang Xue,et al.  Hexacyanoferrate‐Type Prussian Blue Analogs: Principles and Advances Toward High‐Performance Sodium and Potassium Ion Batteries , 2020, Advanced Energy Materials.

[81]  Seung‐Taek Myung,et al.  High‐Voltage Oxygen‐Redox‐Based Cathode for Rechargeable Sodium‐Ion Batteries , 2020, Advanced Energy Materials.

[82]  Yue Ma,et al.  Construction of the Na0.92Li0.40Ni0.73Mn0.24Co0.12O2 sodium-ion cathode with balanced high-power/energy-densities , 2020 .

[83]  Jie Deng,et al.  Electric Vehicles Batteries: Requirements and Challenges , 2020 .

[84]  Chenglong Zhao,et al.  Constructing Na‐Ion Cathodes via Alkali‐Site Substitution , 2020, Advanced Functional Materials.

[85]  S. Dou,et al.  Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries , 2020, Nature Communications.

[86]  S. Dou,et al.  The Cathode Choice for Commercialization of Sodium‐Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs , 2020, Advanced Functional Materials.

[87]  Yun Qiao,et al.  A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery. , 2020, Small.

[88]  Dong Zhou,et al.  O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries , 2020 .

[89]  Xuehang Wu,et al.  Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement , 2020 .

[90]  Weifeng Wei,et al.  A Core-Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. , 2020, ACS applied materials & interfaces.

[91]  Xiangfeng Liu,et al.  Understanding the Multiple Effects of TiO2 Coating on NaMn0.33Fe0.33Ni0.33O2 Cathode Material for Na-Ion Batteries , 2020, ACS Applied Energy Materials.

[92]  P. Barpanda,et al.  Fluorophosphates as Efficient Bifunctional Electrocatalysts for Metal–Air Batteries , 2020, ACS Catalysis.

[93]  Haoshen Zhou,et al.  Suppressing Cation Migration and Reducing Particle Cracks in a Layered Fe-Based Cathode for Advanced Sodium-Ion Batteries. , 2019, Small.

[94]  Yanfei Zeng,et al.  Structural stability and ionic transport property of NaMPO4 (M = V, Cr, Mn, Fe, Co, Ni) as cathode material for Na-ion batteries , 2019, Journal of Power Sources.

[95]  S. Dou,et al.  Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. , 2019, Small.

[96]  S. Dou,et al.  Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. , 2019, Small.

[97]  J. Goodenough,et al.  Low‐Cost Self‐Assembled Oxide Separator for Rechargeable Batteries , 2019, Advanced Functional Materials.

[98]  Chenglong Zhao,et al.  Building aqueous K-ion batteries for energy storage , 2019, Nature Energy.

[99]  P. He,et al.  Manganese‐Based Na‐Rich Materials Boost Anionic Redox in High‐Performance Layered Cathodes for Sodium‐Ion Batteries , 2019, Advanced materials.

[100]  Ya‐Xia Yin,et al.  A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery , 2019, Advanced Energy Materials.

[101]  Zhen-guo Wu,et al.  Insight into Preparation of Fe-Doped Na3V2(PO4)3@C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation. , 2019, ACS applied materials & interfaces.

[102]  Xiao-dong Guo,et al.  High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies , 2019, Advanced Energy Materials.

[103]  C. Yuan,et al.  Ultralong Layered NaCrO2 Nanowires: A Competitive Wide-Temperature-Operating Cathode for Extraordinary High-Rate Sodium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[104]  Ki Jae Kim,et al.  Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries , 2018, Nano Research.

[105]  Jun Lu,et al.  Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes , 2018, Joule.

[106]  Huamin Zhang,et al.  Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage , 2018, Journal of Energy Chemistry.

[107]  Yutao Li,et al.  Room-Temperature Liquid Na-K Anode Membranes. , 2018, Angewandte Chemie.

[108]  Zi‐Feng Ma,et al.  Hierarchical Hollow Prussian Blue Rods Synthesized via Self‐Sacrifice Template as Cathode for High Performance Sodium Ion Battery , 2018, Small Methods.

[109]  D. Cortie,et al.  A Novel Graphene Oxide Wrapped Na2Fe2(SO4)3/C Cathode Composite for Long Life and High Energy Density Sodium‐Ion Batteries , 2018, Advanced Energy Materials.

[110]  Jingyi Luan,et al.  Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode , 2018, Journal of Power Sources.

[111]  Iek-Heng Chu,et al.  KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode , 2018 .

[112]  L. García-Cruz,et al.  Prussian Blue@MoS2 Layer Composites as Highly Efficient Cathodes for Sodium‐ and Potassium‐Ion Batteries , 2018 .

[113]  Feng Wu,et al.  A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries. , 2018, Small.

[114]  C. Delmas,et al.  Sodium and Sodium‐Ion Batteries: 50 Years of Research , 2018 .

[115]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[116]  Shin-ichi Nishimura,et al.  Polyanionic Insertion Materials for Sodium‐Ion Batteries , 2018 .

[117]  Teófilo Rojo,et al.  Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms , 2018, Electrochemical Energy Reviews.

[118]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[119]  Zonghai Chen,et al.  Insight into Ca-Substitution Effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 Cathode Materials for Sodium-Ion Batteries Application. , 2018, Small.

[120]  Yang‐Kook Sun,et al.  Bioinspired Surface Layer for the Cathode Material of High‐Energy‐Density Sodium‐Ion Batteries , 2018 .

[121]  Jun Liu,et al.  A General Metal‐Organic Framework (MOF)‐Derived Selenidation Strategy for In Situ Carbon‐Encapsulated Metal Selenides as High‐Rate Anodes for Na‐Ion Batteries , 2018 .

[122]  Yunhui Huang,et al.  A Dual‐Insertion Type Sodium‐Ion Full Cell Based on High‐Quality Ternary‐Metal Prussian Blue Analogs , 2018 .

[123]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[124]  G. F. Ortiz,et al.  On the Effect of Silicon Substitution in Na3V2(PO4)3 on the Electrochemical Behavior as Cathode for Sodium‐Ion Batteries , 2018 .

[125]  Menggai Jiao,et al.  What is the promising anode material for Na ion batteries? , 2018, Science bulletin.

[126]  Kai Xi,et al.  Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries , 2017, Advances in Materials.

[127]  Yinzhu Jiang,et al.  A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery. , 2017, ACS applied materials & interfaces.

[128]  Hongxu Li,et al.  A promising approach for the recovery of high value-added metals from spent lithium-ion batteries , 2017 .

[129]  X. Lou,et al.  A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na0.7 CoO2 Microspheres. , 2017, Angewandte Chemie.

[130]  T. Shibata,et al.  Domain Size of Phase-Separated NaxCoO2 as Investigated by X-Ray Microdiffraction , 2017 .

[131]  Longwei Yin,et al.  Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries , 2017 .

[132]  Feng Wu,et al.  Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries , 2017, Advanced science.

[133]  Zhe Hu,et al.  Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[134]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[135]  John B. Goodenough,et al.  Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples , 2016 .

[136]  G. Ceder,et al.  Jahn − Teller Assisted Na Di ff usion for High Performance Na Ion Batteries , 2016 .

[137]  Yi Cui,et al.  Subzero‐Temperature Cathode for a Sodium‐Ion Battery , 2016, Advanced materials.

[138]  J. Tirado,et al.  Na3V2(PO4)3/C Nanorods with Improved Electrode-Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[139]  R. Hu,et al.  Uniform Hierarchical Fe3O4@Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes , 2016 .

[140]  Hui Li,et al.  Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[141]  M. Whittingham,et al.  The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon , 2016, Advanced science.

[142]  Christopher S. Johnson,et al.  New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2 , 2015 .

[143]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[144]  Yan Yu,et al.  Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries. , 2015, Angewandte Chemie.

[145]  S. Dou,et al.  Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach , 2015 .

[146]  T. Shibata,et al.  Fast discharge process of layered cobalt oxides due to high Na+ diffusion , 2015, Scientific Reports.

[147]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[148]  Xiaobo Ji,et al.  High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion , 2014 .

[149]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[150]  W. Kobayashi,et al.  Temperature dependence of anisotropic displacement parameters in O3‐type NaM O2 (M = Cr and Fe): Comparison with isostructural LiCoO2 , 2014 .

[151]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[152]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[153]  Maxim Avdeev,et al.  Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. , 2013, Inorganic chemistry.

[154]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[155]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[156]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[157]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[158]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[159]  Jun Liu,et al.  Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures , 2008 .

[160]  M. Ware Prussian Blue: Artists' Pigment and Chemists' Sponge , 2008 .

[161]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[162]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[163]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[164]  C. Cao,et al.  High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries , 2021 .

[165]  K. Chung,et al.  Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries , 2021 .

[166]  Yunhui Huang,et al.  Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries , 2020 .

[167]  M. Anouti,et al.  Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes , 2020 .

[168]  Xiao‐Qing Yang,et al.  Sodium storage property and mechanism of NaCr1/4Fe1/4Ni1/4Ti1/4O2 cathode at various cut-off voltages , 2020 .

[169]  Chemistry / Physics, and Physiology or Medicine. , 2019, Angewandte Chemie.

[170]  Arumugam Manthiram,et al.  Progress in High‐Voltage Cathode Materials for Rechargeable Sodium‐Ion Batteries , 2018 .

[171]  G. Guo,et al.  Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries , 2017 .

[172]  Li-Ping Lv,et al.  In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries , 2022 .

[173]  Jiujun Zhang,et al.  Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage , 2022 .