A generalized God-object method for plausible finger-based interactions in virtual environments

We generalize the six degree-of-freedom God-object approach to enable its use for multi-finger interactions in virtual environments. The connected finger phalanxes are modeled as multiple constrained God objects. The mutual interdependencies between multiple God objects are resolved using Gauss' principle of least constraint. This generalization of the God-object method allows us to avoid the penetration of multiple fingers and their phalanxes with objects within a physically simulated virtual world. Our observations indicate that the generalized God-object approach leads to plausible collision-free positions and motions of the phalanxes of the user's fingers during complex six degree-of-freedom manipulations, while artifacts such as artificial friction or a stuck hand are avoided.

[1]  Heni Ben Amor,et al.  An Animation System for Imitation of Object Grasping in Virtual Reality , 2006, ICAT.

[2]  Kenny Erleben,et al.  Stable, Robust, and Versatile Multibody Dynamics Animation , 2005 .

[3]  Abderrahmane Kheddar,et al.  Gauss' least constraints principle and rigid body simulations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Bernd Fröhlich,et al.  A soft hand model for physically-based manipulation of virtual objects , 2011, 2011 IEEE Virtual Reality Conference.

[5]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[6]  Torsten Kuhlen,et al.  Multi-Contact Grasp Interaction for Virtual Environments , 2008, J. Virtual Real. Broadcast..

[7]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[8]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[9]  Gabriel Zachmann,et al.  Natural and Robust Interaction in Virtual Assembly Simulation , 2001 .

[10]  Ying Wu,et al.  Modeling the constraints of human hand motion , 2000, Proceedings Workshop on Human Motion.

[11]  M. Bergamasco,et al.  A realistic approach for grasping and moving virtual objects , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[12]  Bernd Fröhlich,et al.  Effective manipulation of virtual objects within arm's reach , 2011, 2011 IEEE Virtual Reality Conference.

[13]  R. Lamuela-Raventós,et al.  Effect of skin contact on the antioxidant phenolics in white wine , 2000 .

[14]  Kamran Iqbal,et al.  Contact Detection Algorithms , 2009, J. Comput..

[15]  Christoph W. Borst,et al.  Realistic virtual grasping , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[16]  Michael Piatek,et al.  Tsnnls: A solver for large sparse least squares problems with non-negative variables , 2004, ArXiv.

[17]  Xinyu Zhang,et al.  Interactive continuous collision detection for non-convex polyhedra , 2006, The Visual Computer.

[18]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[19]  Brian Mirtich,et al.  Impulse-based dynamic simulation of rigid body systems , 1996 .

[20]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[21]  David Baraff,et al.  Coping with friction for non-penetrating rigid body simulation , 1991, SIGGRAPH.

[22]  Elsevier Sdol,et al.  Journal of Visual Communication and Image Representation , 2009 .

[23]  R. Scopigno Contact Skinning , .

[24]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[25]  Sharif Razzaque,et al.  The Hand Is More Easily Fooled than the Eye: Users Are More Sensitive to Visual Interpenetration than to Visual-Proprioceptive Discrepancy , 2006, Presence: Teleoperators & Virtual Environments.

[26]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[27]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[28]  Bernd Fröhlich,et al.  Enabling functional validation of virtual cars through Natural Interaction metaphors , 2010, 2010 IEEE Virtual Reality Conference (VR).

[29]  I. Millington Game physics engine development , 2007 .

[30]  Jan Bender,et al.  Constraint-based collision and contact handling using impulses , 2006 .

[31]  Michael Ortega-Binderberger,et al.  A Six Degree-of-Freedom God-Object Method for Haptic Display of Rigid Bodies with Surface Properties , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  David Baraff,et al.  Analytical methods for dynamic simulation of non-penetrating rigid bodies , 1989, SIGGRAPH.

[33]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[34]  Alfred Schmitt,et al.  An impulse-based dynamic simulation system for VR applications , 2005 .

[35]  Matthias Müller,et al.  Hierarchical Position Based Dynamics , 2008, VRIPHYS.

[36]  Jaeyoung Choi,et al.  Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines , 1994, Sci. Program..