Navigation Requirements Development and Performance Assessment of a Martian Ascent Vehicle

[1]  Atsushi Sakai,et al.  An efficient solution to 6DOF localization using Unscented Kalman Filter for planetary rovers , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  John Enright,et al.  Sun Sensor Navigation for Planetary Rovers: Theory and Field Testing , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Jeffrey J. Biesiadecki,et al.  Attitude and position estimation on the Mars exploration rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[4]  Lingling Liu,et al.  A Two-Mode INS/CNS Navigation Method for Lunar Rovers , 2014, IEEE Transactions on Instrumentation and Measurement.

[5]  David Wettergreen,et al.  Star tracker celestial localization system for a lunar rover , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Jason Chuang,et al.  Analysis of Ares 1 Ascent Navigation Options , 2008 .

[7]  E. Glenn Lightsey,et al.  Real-Time Navigation for Mars Missions Using the Mars Network , 2008 .

[8]  E. J. Koenke,et al.  Launch pad alignment of a strapdown navigator by the Kalman filter. , 1968 .

[9]  J. Enright,et al.  Star tracking for planetary rovers , 2012, 2012 IEEE Aerospace Conference.

[10]  P. Savage Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms , 1998 .

[11]  Greg A. Dukeman,et al.  Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles , 2005 .