On the ordering of benzenoid chains and cyclo-polyphenacenes with respect to their numbers of Clar aromatic sextets

Based on Clar aromatic sextet theory [Clar, The Aromatic Serxtet (Wiley, New York, 1972)] and the concept of sextet polynomial introduced by Hosoya and Yamaguchi [Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)], we define a new ordering of benzenoid systems. For two isomeric benzenoid systems B1 and B2, we say B1>B2 if each coefficient of sextet polynomial of B1 is no less than the corresponding coefficient of sextet polynomial of B2. In this paper, we consider the ordering of the benzenoid chains. The maximal and second maximal benzenoid chains as well as the minimal, the second minimal up to the fourth minimal benzenoid chains are determined. Furthermore, under this ordering, we determine the maximal and second maximal cyclo-polyphenacenes as well as the minimal, the second minimal, and up to the seventh minimal cyclo-polyphenacenes.

[1]  M. Randic Aromaticity and conjugation , 1977 .

[2]  William C. Herndon,et al.  Hydrocarbon enthalpies of formation and ab initio calculations , 1995 .

[3]  Haruo Hosoya,et al.  Parameterized valence bond calculations for benzenoid hydrocarbons using clar structure , 1984 .

[4]  S. J. Cyvin,et al.  Kekule Structures in Benzenoid Hydrocarbons , 1988 .

[5]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[6]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[7]  A. C. Evans,et al.  Phenacenes: A family of graphite ribbons. 1. Syntheses of some [7]phenacenes by stilbene-like photocyclizations☆ , 1996 .

[8]  Douglas J. Klein,et al.  Resonance in Elemental Benzenoids , 1996, Discret. Appl. Math..

[9]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[10]  Fuji Zhang,et al.  k-Cycle resonant graphs , 1994, Discret. Math..

[11]  P. G. Carter An empirical equation for the resonance energy of polycyclic aromatic hydrocarbons , 1949 .

[12]  S. R. Gadre,et al.  Clar's Aromatic Sextet Theory Revisited via Molecular Electrostatic Potential Topography , 1999 .

[13]  W. Bonner,et al.  Adsorption of amino acid derivatives by d- and l-quartz. , 1977, Journal of the American Chemical Society.

[14]  Kim,et al.  Structures, Magnetic Properties, and Aromaticity of Cyclacenes. , 1999, Angewandte Chemie.

[15]  Kenneth B. Wiberg,et al.  PROPERTIES OF SOME CONDENSED AROMATIC SYSTEMS , 1997 .

[16]  Lusheng Wang,et al.  Hexagonal chains with minimal total π-electron energy , 2001 .

[17]  Lusheng Wang,et al.  Hexagonal chains with maximal total π-electron energy , 2001 .

[18]  Ivan Gutman,et al.  Acyclic systems with extremal Hückel π-electron energy , 1977 .

[19]  C. Zhan,et al.  Maximum bond order hybrid orbital calculations of C O bond stretching vibrational frequencies , 2000 .

[20]  Ivan Gutman,et al.  Topological properties of benzenoid systems , 1977 .

[21]  K N Houk,et al.  Polyacene and cyclacene geometries and electronic structures: bond equalization, vanishing band gaps, and triplet ground states contrast with polyacetylene. , 2001, The Journal of organic chemistry.

[22]  Haruo Hosoya,et al.  Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. , 1975 .

[23]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[24]  Douglas J. Klein,et al.  Partial Orderings in Chemistry , 1997, J. Chem. Inf. Comput. Sci..

[25]  Douglas J. Klein,et al.  Symmetry of infinite tubular polymers : application to buckytubes , 1993 .

[26]  Douglas J. Klein,et al.  Characterization of Cyclo-Polyphenacenes , 2002, J. Chem. Inf. Comput. Sci..

[27]  Jan Cz. Dobrowolski,et al.  On the Belt and Moebius Isomers of the Coronene Molecule , 2002, J. Chem. Inf. Comput. Sci..