A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes
暂无分享,去创建一个
[1] R. Tibshirani,et al. Generalized additive models for medical research , 1986, Statistical methods in medical research.
[2] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[3] T. Choi,et al. Gaussian Process Regression Analysis for Functional Data , 2011 .
[4] Michael I. Jordan. Graphical Models , 2003 .
[5] Richard H. Battin,et al. Random Processes in Automatic Control. , 1957 .
[6] Peter Green. Linear models for field trials, smoothing and cross-validation , 1985 .
[7] E. A. Sylvestre,et al. Self Modeling Nonlinear Regression , 1972 .
[8] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[9] S. Sundararajan,et al. Predictive Approaches for Choosing Hyperparameters in Gaussian Processes , 1999, Neural Computation.
[10] R. Ash,et al. Topics in stochastic processes , 1975 .
[11] A. A. Weiss,et al. Semiparametric estimates of the relation between weather and electricity sales , 1986 .
[12] W. Härdle. Applied Nonparametric Regression , 1991 .
[13] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[14] S. Janson. Gaussian Hilbert Spaces , 1997 .
[15] Daniel B. Hall,et al. On the application of extended quasi‐likelihood to the clustered data case , 2001 .
[16] Y. Vardi,et al. From image deblurring to optimal investments : maximum likelihood solutions for positive linear inverse problems , 1993 .
[17] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[18] Raymond J. Carroll,et al. Semiparametric regression for clustered data , 2001 .
[19] D. Bates,et al. Mixed-Effects Models in S and S-PLUS , 2001 .
[20] David J. C. MacKay,et al. Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.
[21] Martin Crowder,et al. Gaussian Estimation for Correlated Binomial Data , 1985 .
[22] R. Eubank. Nonparametric Regression and Spline Smoothing , 1999 .
[23] Runze Li,et al. New local estimation procedure for a non‐parametric regression function for longitudinal data , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[24] R. Wolpert,et al. Integrated likelihood methods for eliminating nuisance parameters , 1999 .
[25] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[26] Yoav Ben-Shlomo,et al. SITAR--a useful instrument for growth curve analysis. , 2010, International journal of epidemiology.
[27] G. Robinson. That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .
[28] T. Severini. Integrated likelihood functions for non-Bayesian inference , 2007 .
[29] Heping He,et al. Integrated likelihood inference in semiparametric regression models , 2014 .
[30] Jianqing Fan,et al. Statistical Estimation in Varying-Coefficient Models , 1999 .
[31] A. Seheult,et al. Analysis of Field Experiments by Least Squares Smoothing , 1985 .
[32] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .
[33] Thomas A. Severini,et al. Extended Generalized Estimating Equations for Clustered Data , 1998 .
[34] Anindya Roy,et al. A note on the Bayes factor in a semiparametric regression model , 2009, J. Multivar. Anal..
[35] Johan A. K. Suykens,et al. Kernel Regression in the Presence of Correlated Errors , 2011, J. Mach. Learn. Res..
[36] Christopher K. I. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.
[37] Ashutosh Kumar Singh,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .
[38] Christopher K. I. Williams,et al. Gaussian regression and optimal finite dimensional linear models , 1997 .
[39] Matthias W. Seeger,et al. Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..
[40] R. Tibshirani,et al. Varying‐Coefficient Models , 1993 .
[41] Nancy E. Heckman,et al. Spline Smoothing in a Partly Linear Model , 1986 .
[42] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.