Solution of Nonlinear Stokes Equations Discretized By High-Order Finite Elements on Nonconforming and Anisotropic Meshes, with Application to Ice Sheet Dynamics

Motivated by the need for efficient and accurate simulation of the dynamics of the polar ice sheets, we design high-order finite element discretizations and scalable solvers for the solution of nonlinear incompressible Stokes equations. We focus on power-law, shear thinning rheologies used in modeling ice dynamics and other geophysical flows. We use nonconforming hexahedral meshes and the conforming inf-sup stable finite element velocity-pressure pairings $\mathbb{Q}_k\times \mathbb{Q}^\text{disc}_{k-2}$ or $\mathbb{Q}_k \times \mathbb{P}^\text{disc}_{k-1}$. To solve the nonlinear equations, we propose a Newton-Krylov method with a block upper triangular preconditioner for the linearized Stokes systems. The diagonal blocks of this preconditioner are sparse approximations of the (1,1)-block and of its Schur complement. The (1,1)-block is approximated using linear finite elements based on the nodes of the high-order discretization, and the application of its inverse is approximated using algebraic multigrid with an incomplete factorization smoother. This preconditioner is designed to be efficient on anisotropic meshes, which are necessary to match the high aspect ratio domains typical for ice sheets. We develop and make available extensions to two libraries---a hybrid meshing scheme for the p4est parallel AMR library, and a modified smoothed aggregation scheme for PETSc---to improve their support for solving PDEs in high aspect ratio domains. In a numerical study, we find that our solver yields fast convergence that is independent of the element aspect ratio, the occurrence of nonconforming interfaces, and of mesh refinement, and that depends only weakly on the polynomial finite element order. We simulate the ice flow in a realistic description of the Antarctic ice sheet derived from field data, and study the parallel scalability of our solver for problems with up to 383M unknowns.

[1]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[2]  H. L. Miller,et al.  Global climate projections , 2007 .

[3]  Thomas A. Manteuffel,et al.  Algebraic multigrid for higher-order finite elements , 2005 .

[4]  Daniel F. Martin,et al.  Adaptive mesh, finite volume modeling of marine ice sheets , 2013, J. Comput. Phys..

[5]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[6]  Claudio Canuto,et al.  Finite-Element Preconditioning of G-NI Spectral Methods , 2009, SIAM J. Sci. Comput..

[7]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[8]  H. Blatter Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients , 1995 .

[9]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[10]  A. Zmitrowicz,et al.  Glaciers and laws of friction and sliding , 2003 .

[11]  Jaroslav Hron,et al.  A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes , 2009, J. Comput. Phys..

[12]  D. May,et al.  Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics , 2008 .

[13]  Vincent Heuveline,et al.  On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes , 2007 .

[14]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[15]  Jonathan J. Hu,et al.  A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..

[16]  Patrick Joly,et al.  Influence of Gauss and Gauss‐Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain , 2009 .

[17]  Carsten Burstedde,et al.  Low-Cost Parallel Algorithms for 2:1 Octree Balance , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[18]  Todd D. Ringler,et al.  A parallel high‐order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments , 2012 .

[19]  Alun Hubbard,et al.  Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM) , 2008 .

[20]  Andrea Toselli,et al.  Mixed hp-finite element approximations on geometric edge and boundary layer meshes in three dimensions , 2001 .

[21]  Eric Rignot,et al.  Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher‐order model , 2013 .

[22]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[23]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[24]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[25]  Eric Rignot,et al.  Coupling ice flow models of varying orders of complexity with the Tiling method , 2012, Journal of Glaciology.

[26]  J. Kraus,et al.  Algebraic multigrid for finite element elasticity equations: Determination of nodal dependence via edge‐matrices and two‐level convergence , 2010 .

[27]  S. MacLachlan,et al.  Scalable robust solvers for unstructured FE geodynamic modeling applications: Solving the Stokes equation for models with large localized viscosity contrasts , 2009 .

[28]  Andrew G. Salinger,et al.  Albany/FELIX : a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis , 2014 .

[29]  T. Zwinger,et al.  The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer , 2008 .

[30]  Luke N. Olson Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh , 2007, SIAM J. Sci. Comput..

[31]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[32]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[33]  Edmond Chow,et al.  A Survey of Parallelization Techniques for Multigrid Solvers , 2006, Parallel Processing for Scientific Computing.

[34]  Mikito Furuichi,et al.  Development of a Stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic , 2011, J. Comput. Phys..

[36]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[37]  Sang Dong Kim PIECEWISE BILINEAR PRECONDITIONING ON HIGH-ORDER FINITE ELEMENT METHOD , 2005 .

[38]  BursteddeCarsten,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011 .

[39]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[40]  Antony J. Payne,et al.  An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1) , 2010 .

[41]  A. Janka Smoothed aggregation multigrid for a Stokes problem , 2008 .

[42]  Barry Smith,et al.  Achieving textbook multigrid eciency for hydrostatic ice sheet ow , 2010 .

[43]  M. Adams,et al.  A Parallel Maximal Independent Set Algorithm , 1998 .

[44]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[45]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[46]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[47]  Georg Stadler,et al.  Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..

[48]  O. Ghattas,et al.  An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model , 2012, Journal of Glaciology.

[49]  Michel O. Deville,et al.  Finite-Element Preconditioning for Pseudospectral Solutions of Elliptic Problems , 1990, SIAM J. Sci. Comput..

[50]  Charles F. F. Karney Algorithms for geodesics , 2011, Journal of Geodesy.

[51]  Mark Ainsworth,et al.  The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..

[52]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[53]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[54]  Boyce E. Griffith,et al.  Efficient Variable-Coefficient Finite-Volume Stokes Solvers , 2013, 1308.4605.

[55]  R. Hindmarsh,et al.  A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling , 2004 .

[56]  Barry Smith,et al.  Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow , 2013, SIAM J. Sci. Comput..

[57]  Alexander F. Shchepetkin,et al.  Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System , 2007 .

[58]  Jed Brown,et al.  Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D , 2010, J. Sci. Comput..

[59]  Julian P. Lowman,et al.  Mantle Convection in the Earth and Planets , 2002 .

[60]  Jacques Rappaz,et al.  Analysis and Finite Element Approximation of a Nonlinear Stationary Stokes Problem Arising in Glaciology , 2011, Adv. Numer. Anal..

[61]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[62]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[63]  Maxim A. Olshanskii,et al.  An Iterative Method for the Stokes-Type Problem with Variable Viscosity , 2009, SIAM J. Sci. Comput..

[64]  Jinzhong Xu,et al.  Numerical methods for non-Newtonian fluids , 2011 .