Data Mining in Medicine

Extensive amounts of data stored in medical databases require the development of specialized tools for accessing the data, data analysis, knowledge discovery, and cffective use of sloretl knowledge and data. This chapter focuses on Data Mining methods and tools for knowledge discovery. The chapter sketches the selected Data Mining techniques, and illustrates their applicability to medical diagnostic and prognostic problems.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[4]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  J. Lubsen,et al.  A Practical Device for the Application of a Diagnostic or Prognostic Function , 1978, Methods of Information in Medicine.

[6]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[7]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[8]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[9]  R. Michalski Understanding the Nature of Learning: Issues and Research Directions , 1985 .

[10]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[11]  I. Bratko,et al.  Learning decision rules in noisy domains , 1987 .

[12]  Ivan Bratko,et al.  ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated Users , 1987, EWSL.

[13]  Jadzia Cendrowska,et al.  PRISM: An Algorithm for Inducing Modular Rules , 1987, Int. J. Man Mach. Stud..

[14]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[15]  Paul Compton,et al.  Knowledge in Context: A Strategy for Expert System Maintenance , 1990, Australian Joint Conference on Artificial Intelligence.

[16]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[17]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[18]  Ivan Bratko,et al.  KARDIO - a study in deep and qualitative knowledge for expert systems , 1989 .

[19]  Robert C. Holte,et al.  Concept Learning and the Problem of Small Disjuncts , 1989, IJCAI.

[20]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[21]  David H. Wolpert,et al.  Constructing a generalizer superior to NETtalk via a mathematical theory of generalization , 1990, Neural Networks.

[22]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[23]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[24]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[25]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[26]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[27]  Peter Clark,et al.  Rule Induction with CN2: Some Recent Improvements , 1991, EWSL.

[28]  Korris Fu-Lai Chung,et al.  A Node Pruning Algorithm for Backpropagation Networks , 1992, Int. J. Neural Syst..

[29]  P. Wilding,et al.  The application of backpropagation neural networks to problems in pathology and laboratory medicine. , 1992, Archives of pathology & laboratory medicine.

[30]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[31]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[32]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[33]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[34]  Ah-Hwee Tan,et al.  Rule Extraction, Fuzzy ARTMAP, and Medical Databases , 1993 .

[35]  Igor Kononenko,et al.  Inductive and Bayesian learning in medical diagnosis , 1993, Appl. Artif. Intell..

[36]  J Zeleznikow,et al.  FLORENCE: synthesis of case-based and model-based reasoning in a nursing care planning system. , 1993, Computers in nursing.

[37]  Saso Dzeroski,et al.  The utility of background knowledge in learning medical diagnostic rules , 1993, Appl. Artif. Intell..

[38]  G Edwards,et al.  Peirs: A pathologist‐maintained expert system for the interpretation of chemical pathology reports , 1993, Pathology.

[39]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[40]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[41]  K. Liestøl,et al.  Survival analysis and neural nets. , 1994, Statistics in medicine.

[42]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[43]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[44]  M Stefanelli,et al.  An Influence Diagram for Assessing GVHD Prophylaxis after Bone Marrow Transplantation in Children , 1994, Medical decision making : an international journal of the Society for Medical Decision Making.

[45]  C E Kahn,et al.  Case-Based Reasoning and Imaging Procedure Selection , 1994, Investigative radiology.

[46]  Thomas G. Dietterich,et al.  A study of distance-based machine learning algorithms , 1994 .

[47]  T. W. Barlow Self-organizing maps and molecular similarity. , 1995, Journal of molecular graphics.

[48]  J R Beck,et al.  Artificial neural networks for medical classification decisions. , 1995, Archives of pathology & laboratory medicine.

[49]  Tom M. Mitchell,et al.  Using the Future to Sort Out the Present: Rankprop and Multitask Learning for Medical Risk Evaluation , 1995, NIPS.

[50]  W. Baxt Application of artificial neural networks to clinical medicine , 1995, The Lancet.

[51]  I. Kononenko,et al.  INDUCTION OF DECISION TREES USING RELIEFF , 1995 .

[52]  Joachim Diederich,et al.  Survey and critique of techniques for extracting rules from trained artificial neural networks , 1995, Knowl. Based Syst..

[53]  Peter Szolovits Uncertainty and Decisions in Medical Informatics , 1995, Methods of Information in Medicine.

[54]  G Rau,et al.  Fuzzy logic and control: principal approach and potential applications in medicine. , 1995, Artificial organs.

[55]  R. Dybowski,et al.  Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm , 1996, The Lancet.

[56]  Robert F. Harrison,et al.  Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks , 1996, Artif. Intell. Medicine.

[57]  Rudy Setiono,et al.  Extracting rules from pruned networks for breast cancer diagnosis , 1996, Artif. Intell. Medicine.

[58]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[59]  A. Prochazka The fuzzy logic of visuomotor control. , 1996, Canadian journal of physiology and pharmacology.

[60]  Alberto Riva,et al.  Learning temporal probabilistic causal models from longitudinal data , 1996, Artif. Intell. Medicine.

[61]  S Dzeroski,et al.  Rule induction and instance-based learning applied in medical diagnosis. , 1996, Technology and health care : official journal of the European Society for Engineering and Medicine.

[62]  A R Sovijärvi,et al.  Classification of lung sounds in patients with asthma, emphysema, fibrosing alveolitis and healthy lungs by using self-organizing maps. , 1996, Clinical physiology.

[63]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[64]  F.M. Ham,et al.  Classification of cardiac arrhythmias using fuzzy ARTMAP , 1996, IEEE Transactions on Biomedical Engineering.

[65]  Richard Dybowski,et al.  Prediction of outcome in the critically ill using an artificial neural network synthesised by a genetic algorithm , 1996 .

[66]  Dieter Merkl,et al.  Clinical gait analysis by neural networks: issues and experiences , 1997, Proceedings of Computer Based Medical Systems.

[67]  Rudy Setiono,et al.  Extracting Rules from Neural Networks by Pruning and Hidden-Unit Splitting , 1997, Neural Computation.

[68]  Robert T. Macura,et al.  Case-based reasoning: opportunities and applications in health care , 1997, Artif. Intell. Medicine.

[69]  Yan Zhu,et al.  Computerized tumor boundary detection using a Hopfield neural network , 1997, IEEE Transactions on Medical Imaging.

[70]  Stephen Muggleton,et al.  Carcinogenesis Predictions Using Inductive Logic Programming , 1997 .

[71]  Ron Kohavi,et al.  Data Mining Using MLC a Machine Learning Library in C++ , 1996, Int. J. Artif. Intell. Tools.

[72]  Pedro Larrañaga,et al.  Learning Bayesisan Networks by Genetic Algorithms: A Case Study in the Prediction of Survival in Malignant Skin Melanoma , 1997, AIME.

[73]  N. Lavrac,et al.  Data Analysis of Patients with Severe Head Injury , 1997 .

[74]  T. Y. Lin,et al.  Rough Sets and Data Mining , 1997, Springer US.

[75]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[76]  Jude W. Shavlik,et al.  Using neural networks for data mining , 1997, Future Gener. Comput. Syst..

[77]  Evangelos Triantaphyllou,et al.  Fuzzy logic in computer-aided breast cancer diagnosis: analysis of lobulation , 1997, Artif. Intell. Medicine.

[78]  Friedrich Steimann,et al.  Fuzzy set theory in medicine , 1997, Artif. Intell. Medicine.

[79]  John A. Halter,et al.  Concept Discovery by Decision Table Decomposition and its Application in Neurophysiology , 1997 .

[80]  Cathy H. Wu Artificial Neural Networks for Molecular Sequence Analysis , 1997, Comput. Chem..

[81]  Haku Ishida,et al.  Applying a Neural Network to Prostate Cancer Survival Data , 1997 .

[82]  David McSherry,et al.  Hypothesist: A Development Environment for Intelligent Diagnostic Systems , 1997, AIME.

[83]  Saso Dzeroski,et al.  Acquiring and Validating Background Knowledge for Machine Learning Using Function Decomposition , 1997, AIME.

[84]  Günther Rau,et al.  Design and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model , 1997, Artif. Intell. Medicine.

[85]  P W Hamilton,et al.  Quantitative study of ductal breast cancer--patient targeted prognosis: an exploration of case base reasoning. , 1997, Pathology, research and practice.

[86]  Susan E. George,et al.  Artificial neural network analysis of noisy visual field data in glaucoma , 1997, Artif. Intell. Medicine.

[87]  Hannu Toivonen,et al.  Finding Frequent Substructures in Chemical Compounds , 1998, KDD.

[88]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[89]  Ivan Bratko,et al.  Feature Transformation by Function Decomposition , 1998, IEEE Intell. Syst..

[90]  Wai Lam,et al.  Bayesian Network Refinement Via Machine Learning Approach , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[91]  Warren T. Jones,et al.  Research Paper: Association Rules and Data Mining in Hospital Infection Control and Public Health Surveillance , 1998, J. Am. Medical Informatics Assoc..

[92]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[93]  Saso Dzeroski,et al.  Acquiring background knowledge for machine learning using function decomposition: a case study in rheumatology , 1998, Artif. Intell. Medicine.

[94]  Shusaku Tsumoto,et al.  Modelling Medical Diagnostic Rules Based on Rough Sets , 1998, Rough Sets and Current Trends in Computing.

[95]  Jan Komorowski,et al.  Modelling prognostic power of cardiac tests using rough sets , 1999, Artif. Intell. Medicine.

[96]  Lucila Ohno-Machado,et al.  A genetic algorithm approach to multi-disorder diagnosis , 2000, Artif. Intell. Medicine.

[97]  Rudy Setiono,et al.  Generating concise and accurate classification rules for breast cancer diagnosis , 2000, Artif. Intell. Medicine.

[98]  Julio Solano-González,et al.  Model-based spectral estimation of Doppler signals using parallel genetic algorithms , 2000, Artif. Intell. Medicine.

[99]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[100]  Tsau Young Lin,et al.  Introducing the book , 2000 .

[101]  J R Beck,et al.  Predicting Patient’s Long-Term Clinical Status after Hip Arthroplasty Using Hierarchical Decision Modelling and Data Mining , 2001, Methods of Information in Medicine.

[102]  Mauro Gaspari,et al.  An expert system for the evaluation of EDSS in multiple sclerosis , 2002, Artif. Intell. Medicine.

[103]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[104]  Vincent Corruble,et al.  Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. , 2002, Journal of neurosurgery.

[105]  Joseph L. Breault,et al.  Data mining a diabetic data warehouse , 2002, Artif. Intell. Medicine.

[106]  Nada Lavrac,et al.  Expert-Guided Subgroup Discovery: Methodology and Application , 2011, J. Artif. Intell. Res..

[107]  Krzysztof J. Cios,et al.  Bayesian learning for cardiac SPECT image interpretation , 2002, Artif. Intell. Medicine.

[108]  Gerold Porenta,et al.  Case-based distance measurements for the selection of controls in case-matched studies: application in coronary interventions , 2002, Artif. Intell. Medicine.

[109]  Nada Lavrac,et al.  Active subgroup mining: a case study in coronary heart disease risk group detection , 2003, Artif. Intell. Medicine.

[110]  Marie-Odile Cordier,et al.  Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms , 2003, Artif. Intell. Medicine.

[111]  Joseph Y. Lo,et al.  Self-organizing map for cluster analysis of a breast cancer database , 2003, Artif. Intell. Medicine.

[112]  Lex M Bouter,et al.  A Classification Tree for Predicting Recurrent Falling in Community‐Dwelling Older Persons , 2003, Journal of the American Geriatrics Society.

[113]  Heinrich Niemann,et al.  Brain volumes characterisation using hierarchical neural networks , 2003, Artif. Intell. Medicine.

[114]  Nada Lavrač,et al.  Induction of Decision Trees and Bayesian Classification Applied to Diagnosis of Sport Injuries , 1997, Journal of Medical Systems.

[115]  Serge Ruff,et al.  Cerebral modeling and dynamic Bayesian networks , 2004, Artif. Intell. Medicine.

[116]  D. Wasserman,et al.  Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behaviour of offspring: a cohort study , 2004, The Lancet.

[117]  Lior Rokach,et al.  Information Retrieval System for Medical Narrative Reports , 2004, FQAS.

[118]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[119]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[120]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[121]  Peter A. Flach,et al.  Subgroup Discovery with CN2-SD , 2004, J. Mach. Learn. Res..

[122]  Raymond J. Mooney,et al.  Symbolic and Neural Learning Algorithms: An Experimental Comparison , 1991, Machine Learning.

[123]  I. Modai,et al.  Neural network based on adaptive resonance theory as compared to experts in suggesting treatment for schizophrenic and unipolar depressed in-patients , 1996, Journal of Medical Systems.

[124]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[125]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[126]  Andrzej Skowron,et al.  Rough Sets , 1995, Lecture Notes in Computer Science.

[127]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[128]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[129]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..