Multiobjective optimization based on reputation

To improve the robustness and ease-of-use of Evolutionary Algorithms (EAs), adaptation on evolutionary operators and control parameters shows significant advantages over fixed operators with default parameter settings. To date, many successful research efforts to adaptive EAs have been devoted to Single-objective Optimization Problems (SOPs), whereas, few studies have been conducted on Multiobjective Optimization Problems (MOPs). Directly inheriting the adaptation mechanisms of SOPs in the MOPs context faces challenges due to the intrinsic differences between these two kinds of problems. To fill in this gap, in this paper, a novel Multiobjective Evolutionary Algorithm (MOEA) based on reputation is proposed as a unified framework for general MOEAs. The reputation concept is introduced for the first time to measure the dynamic competency of evolutionary operators and control parameters across problems and stages of the search in MOEAs. Based on the notion of reputation, individual solutions then select highly reputable evolutionary operators and control parameters. Experimental studies on 58 benchmark MOPs in jMetal confirm its superior performance over the classical MOEAs and other adaptive MOEAs.

[1]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[2]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[3]  Kalyanmoy Deb,et al.  Self-adaptive simulated binary crossover for real-parameter optimization , 2007, GECCO '07.

[4]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[5]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Ferrante Neri,et al.  Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms , 2009 .

[7]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[10]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Michèle Sebag,et al.  Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection , 2009, 2009 IEEE Congress on Evolutionary Computation.

[12]  Xiaodong Li,et al.  Rotationally Invariant Crossover Operators in Evolutionary Multi-objective Optimization , 2006, SEAL.

[13]  Ponnuthurai N. Suganthan,et al.  Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection , 2010, Inf. Sci..

[14]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[15]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[16]  M. Hamdan On the Disruption-level of Polynomial Mutation for Evolutionary Multi-objective Optimisation Algorithms , 2010, Comput. Informatics.

[17]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[18]  John K. Zao,et al.  Optimizing degree distributions in LT codes by using the multiobjective evolutionary algorithm based on decomposition , 2010, IEEE Congress on Evolutionary Computation.

[19]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[20]  Janez Brest,et al.  Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Mehmet Fatih Tasgetiren,et al.  Multi-objective optimization based on self-adaptive differential evolution algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[22]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[24]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[25]  Yaonan Wang,et al.  Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure , 2010, Soft Comput..

[26]  Swagatam Das,et al.  An improved differential evolution algorithm with fitness-based adaptation of the control parameters , 2011, Inf. Sci..

[27]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Álvaro Fialho,et al.  Adaptive strategy selection in differential evolution , 2010, GECCO '10.

[29]  A. E. Eiben,et al.  Beating the ‘world champion’ evolutionary algorithm via REVAC tuning , 2010, IEEE Congress on Evolutionary Computation.

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[31]  Jie Zhang,et al.  A COMPREHENSIVE APPROACH FOR SHARING SEMANTIC WEB TRUST RATINGS , 2007, Comput. Intell..

[32]  Giovanni Iacca,et al.  Ockham's Razor in memetic computing: Three stage optimal memetic exploration , 2012, Inf. Sci..

[33]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[34]  Chao-Hong Chen,et al.  Enabling the Extended Compact Genetic Algorithm for Real-Parameter Optimization by Using Adaptive Discretization , 2010, Evolutionary Computation.

[35]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Qingfu Zhang,et al.  Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[37]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[38]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[39]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[40]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[41]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[42]  Tong Heng Lee,et al.  Evolving better population distribution and exploration in evolutionary multi-objective optimization , 2006, Eur. J. Oper. Res..

[43]  Xin Yao,et al.  Multiple Choices and Reputation in Multiagent Interactions , 2007, IEEE Transactions on Evolutionary Computation.

[44]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[45]  Gexiang Zhang,et al.  Super-fit Multicriteria Adaptive Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[46]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[47]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[48]  Audun Jøsang,et al.  A survey of trust and reputation systems for online service provision , 2007, Decis. Support Syst..

[49]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[50]  X. Yao,et al.  How important is your reputation in a multi-agent environment , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[51]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[52]  Jie Zhang,et al.  A multiagent evolutionary framework based on trust for multiobjective optimization , 2012, AAMAS.

[53]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[54]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[55]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[56]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[58]  Jun Zhang,et al.  Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms , 2007, IEEE Transactions on Evolutionary Computation.

[59]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[60]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[61]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[62]  Arthur C. Sanderson,et al.  Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).