Constraint Propagation for First-Order Logic and Inductive Definitions

In Constraint Programming, constraint propagation is a basic component of constraint satisfaction solvers. Here we study constraint propagation as a basic form of inference in the context of first-order logic (FO) and extensions with inductive definitions (FO(ID)) and aggregates (FO(AGG)). In a first, semantic approach, a theory of propagators and constraint propagation is developed for theories in the context of three-valued interpretations. We present an algorithm with polynomial-time data complexity. We show that constraint propagation in this manner can be represented by a datalog program. In a second, symbolic approach, the semantic algorithm is lifted to a constraint propagation algorithm in symbolic structures, symbolic representations of classes of structures. The third part of the article is an overview of existing and potential applications of constraint propagation for model generation, grounding, interactive search problems, approximate methods for ∃∀SO problems, and approximate query answering in incomplete databases.

[1]  A. Doctoral TECHNIQUES FOR REASONING IN FO(ID) AND FIXPOINT LOGIC , 2010 .

[2]  Alberto Pettorossi,et al.  Transformation of Logic Programs , 1994 .

[3]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[4]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[5]  Eugenia Ternovska,et al.  Inductive situation calculus , 2004, Artif. Intell..

[6]  Joost Vennekens,et al.  Building a Knowledge Base System for an Integration of Logic Programming and Classical Logic , 2008, ICLP.

[7]  Camilo Rueda,et al.  An Overview of FORCES: An INRIA Project on Declarative Formalisms for Emergent Systems , 2009, ICLP.

[8]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[9]  Daniel P. Miranker,et al.  On the Performance of Lazy Matching in Production Systems , 1990, AAAI.

[10]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[11]  Johan Wittocx,et al.  Grounding FO and FO(ID) with Bounds , 2010, J. Artif. Intell. Res..

[12]  Jean Goubault-Larrecq A BDD-Based Simplification and Skolemization Procedure , 1995, Log. J. IGPL.

[13]  Wolfgang Faber,et al.  Semantics and complexity of recursive aggregates in answer set programming , 2011, Artif. Intell..

[14]  Tomi Janhunen,et al.  Representing Normal Programs with Clauses , 2004, ECAI.

[15]  David G. Mitchell,et al.  Enfragmo: A System for Modelling and Solving Search Problems with Logic , 2012, LPAR.

[16]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[17]  Charles Lanny Forgy,et al.  On the efficient implementation of production systems. , 1979 .

[18]  Johan Wittocx,et al.  Grounding with Bounds , 2008, AAAI.

[19]  Ping Hou,et al.  FO(FD): Extending classical logic with rule-based fixpoint definitions , 2010, Theory and Practice of Logic Programming.

[20]  Tran Cao Son,et al.  An Extension to Conformant Planning Using Logic Programming , 2007, IJCAI.

[21]  Johan Wittocx,et al.  Approximate Reasoning in First-Order Logic Theories , 2008, KR.

[22]  Alberto O. Mendelzon,et al.  Tableau Techniques for Querying Information Sources through Global Schemas , 1999, ICDT.

[23]  Michael Gelfond,et al.  Integrating answer set programming and constraint logic programming , 2008, Annals of Mathematics and Artificial Intelligence.

[24]  Martin Gebser,et al.  clasp : A Conflict-Driven Answer Set Solver , 2007, LPNMR.

[25]  WittocxJohan,et al.  Constraint Propagation for First-Order Logic and Inductive Definitions , 2013 .

[26]  Theresa Swift An Engine for Computing Well-Founded Models , 2009, ICLP.

[27]  Jérôme Lang,et al.  Principles of Knowledge Representation and Reasoning: Proceedings of the 11th International Conference (KR 2008) , 2008 .

[28]  David G. Mitchell,et al.  Lifted Unit Propagation for Effective Grounding , 2011, ArXiv.

[29]  Solomon Feferman,et al.  Toward useful type-free theories. I , 1984, Journal of Symbolic Logic.

[30]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[31]  Michael Leuschel,et al.  Advanced Techniques for Logic Program Specialisation , 1997, AI Commun..

[32]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[33]  Martin Gebser,et al.  Constraint Answer Set Solving , 2009, ICLP.

[34]  David Scott Warren,et al.  Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings , 2009, ICLP.

[35]  Mark E. Stickel,et al.  A prolog technology theorem prover: Implementation by an extended prolog compiler , 1986, Journal of Automated Reasoning.

[36]  Maurice Bruynooghe,et al.  Approximate Query Answering in Locally Closed Databases , 2007, AAAI.

[37]  Maarten Marx,et al.  Finite Model Theory and Its Applications , 2007, Texts in Theoretical Computer Science. An EATCS Series.

[38]  Anderson Faustino da Silva,et al.  The Design of the YAP Compiler: An Optimizing Compiler for Logic Programming Languages , 2006, J. Univers. Comput. Sci..

[39]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[40]  Albert-Ludwigs-Universität Freiburg Principles of Knowledge Representation and Reasoning , 2012 .

[41]  Victor W. Marek,et al.  The Logic Programming Paradigm: A 25-Year Perspective , 2011 .

[42]  Maurice Bruynooghe,et al.  Accuracy and Efficiency of Fixpoint Methods for Approximate Query Answering in Locally Complete Databases , 2008, KR.

[43]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[44]  Chitta Baral,et al.  Logic Programming and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings , 2007, LPNMR.

[45]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[46]  Joost Vennekens,et al.  Predicate Introduction for Logics with a Fixpoint Semantics. Part I: Logic Programming , 2007, Fundam. Informaticae.

[47]  Charles L. Forgy,et al.  Rete: A Fast Algorithm for the Many Patterns/Many Objects Match Problem , 1982, Artif. Intell..

[48]  David G. Mitchell,et al.  A Framework for Representing and Solving NP Search Problems , 2005, AAAI.

[49]  Joost Vennekens,et al.  Well-Founded Semantics and the Algebraic Theory of Non-monotone Inductive Definitions , 2007, LPNMR.

[50]  Gerald Pfeifer,et al.  Design and implementation of aggregate functions in the DLV system* , 2008, Theory and Practice of Logic Programming.

[51]  Maurice Bruynooghe,et al.  Constraint Propagation for Extended First-Order Logic , 2010, ArXiv.

[52]  Calif. Logic Programming : 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009 : Proceedings , 2009 .

[53]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[54]  Maurice Bruynooghe,et al.  Representation of Partial Knowledge and Query Answering in Locally Complete Databases , 2006, LPAR.

[55]  Peter J. Stuckey,et al.  The Design of the Zinc Modelling Language , 2008, Constraints.

[56]  Peter Van Weert,et al.  Efficient Lazy Evaluation of Rule-Based Programs , 2010, IEEE Transactions on Knowledge and Data Engineering.

[57]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[58]  Maurice Bruynooghe,et al.  An approximative inference method for solving ∃∀SO satisfiability problems , 2012, J. Artif. Intell. Res..

[59]  Maurice Bruynooghe,et al.  Satisfiability Checking for PC(ID) , 2005, LPAR.

[60]  Eugenia Ternovska,et al.  Reducing Inductive Definitions to Propositional Satisfiability , 2005, ICLP.

[61]  Paul Bell,et al.  A Note on the Emptiness of Semigroup Intersections , 2007, Fundam. Informaticae.

[62]  Joost Vennekens,et al.  A logical framework for configuration software , 2009, PPDP '09.

[63]  Maurice Bruynooghe,et al.  An Approximative Inference Method for Solving THERE EXISTS FOR ALL SO Satisfiability Problems , 2010, JELIA.

[64]  Miroslaw Truszczynski,et al.  Propositional Satisfiability in Answer-Set Programming , 2001, KI/ÖGAI.

[65]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[66]  Johan Wittocx,et al.  The IDP system: A model expansion system for an extension of classical logic , 2008 .

[67]  Miroslaw Truszczynski,et al.  The Second Answer Set Programming Competition , 2009, LPNMR.

[68]  Krzysztof R. Apt,et al.  Some Remarks on Boolean Constraint Propagation , 1999, New Trends in Constraints.

[69]  Eugenia Ternovska,et al.  A logic of nonmonotone inductive definitions , 2008, TOCL.

[70]  Maurice Bruynooghe,et al.  Well-founded and stable semantics of logic programs with aggregates , 2007, Theory Pract. Log. Program..

[71]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[72]  Francesco Scarcello,et al.  Enhancing DLV instantiator by backjumping techniques , 2007, Annals of Mathematics and Artificial Intelligence.

[73]  David G. Mitchell,et al.  Expressive power and abstraction in Essence , 2008, Constraints.

[74]  Warwick Harvey,et al.  Essence: A constraint language for specifying combinatorial problems , 2007, Constraints.

[75]  Johan Wittocx,et al.  Debugging for Model Expansion , 2009, ICLP.

[76]  Jeffrey D. Ullman,et al.  Principles of database and knowledge-base systems, Vol. I , 1988 .

[77]  Serge Abiteboul,et al.  Datalog Extensions for Database Queries and Updates , 1991, J. Comput. Syst. Sci..

[78]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[79]  David A. McAllester Truth Maintenance , 1990, AAAI.

[80]  Daniel Jackson,et al.  Alloy: a lightweight object modelling notation , 2002, TSEM.

[81]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[82]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[83]  Maurice Bruynooghe,et al.  A Practical Framework for the Abstract Interpretation of Logic Programs , 1991, J. Log. Program..

[84]  Phokion G. Kolaitis,et al.  Finite Model Theory and Its Applications (Texts in Theoretical Computer Science. An EATCS Series) , 2005 .

[85]  Krzysztof R. Apt,et al.  The Essence of Constraint Propagation , 1998, Theor. Comput. Sci..

[86]  Johan Wittocx,et al.  Finite domain and symbolic inference methods for extensions of first-order logic , 2010, AI Commun..

[87]  Marc Denecker,et al.  Extending Classical Logic with Inductive Definitions , 2000, Computational Logic.

[88]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[89]  Jiří Vyskočil,et al.  Transformation of Logic Programs , 2008 .

[90]  Ilkka Niemelä,et al.  Smodels: A System for Answer Set Programming , 2000, ArXiv.

[91]  Mario Alviano,et al.  The Third Answer Set Programming Competition: Preliminary Report of the System Competition Track , 2011, LPNMR.

[92]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[93]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[94]  Emina Torlak,et al.  Kodkod: A Relational Model Finder , 2007, TACAS.

[95]  Maurice Bruynooghe,et al.  Towards a logical reconstruction of a theory for locally closed databases , 2010, TODS.

[96]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[97]  Joost Vennekens,et al.  A Java API for a knowledge base system , 2011 .

[98]  Jörg Flum,et al.  Mathematical logic , 1985, Undergraduate texts in mathematics.