Sieve M inference on irregular parameters

This paper presents sieve inferences on possibly irregular (i.e., slower than root-n estimable) functionals of semi-nonparametric models with i.i.d. data. We provide a simple consistent variance estimator of the plug-in sieve M estimator of a possibly irregular functional, and the asymptotic standard normality of the sieve t statistic. We show that, for hypothesis testing of irregular functionals, the sieve likelihood ratio statistic is asymptotically Chi-square distributed. These results are useful in inference on structural parameters that may have singular semiparametric efficiency bounds. A simulation study and an empirical application of Heckman and Singer (1984) duration model are presented.

[1]  Bo E. Honoré Simple estimation of a duration model with unobserved heterogeneity , 1990 .

[2]  Jeffrey S. Racine,et al.  Semiparametric ARX neural-network models with an application to forecasting inflation , 2001, IEEE Trans. Neural Networks.

[3]  J. Powell,et al.  Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models , 2012 .

[4]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[5]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[6]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[7]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[8]  Hemant Ishwaran Identifiability and rates of estimation for scale parameters in location mixture models , 1996 .

[9]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[10]  A. V. D. Vaart,et al.  On Differentiable Functionals , 1991 .

[11]  S. Geer Empirical Processes in M-Estimation , 2000 .

[12]  A. Ronald Gallant,et al.  On the asymptotic normality of Fourier flexible form estimates , 1991 .

[13]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[14]  Halbert White,et al.  On learning the derivatives of an unknown mapping with multilayer feedforward networks , 1992, Neural Networks.

[15]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[16]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[17]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[18]  H. Bierens CONSISTENCY AND ASYMPTOTIC NORMALITY OF SIEVE ML ESTIMATORS UNDER LOW-LEVEL CONDITIONS , 2014, Econometric Theory.

[19]  Shakeeb Khan,et al.  Irregular Identification, Support Conditions, and Inverse Weight Estimation , 2010 .

[20]  Geert Ridder,et al.  The Singularity of the Information Matrix of the Mixed Proportional Hazard Model , 2002 .

[21]  H. Bierens CONSISTENCY AND ASYMPTOTIC NORMALITY OF SIEVE ML ESTIMATORS UNDER LOW-LEVEL CONDITIONS—CORRIGENDUM TO SUPPLEMENTARY MATERIAL , 2014, Econometric Theory.

[22]  G. Chamberlain Asymptotic efficiency in semi-parametric models with censoring , 1986 .

[23]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[24]  Gary Chamberlain,et al.  Binary Response Models for Panel Data: Identification and Information , 2010 .

[25]  Halbert White,et al.  Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators , 1999, IEEE Trans. Inf. Theory.

[26]  Shakeeb Khan,et al.  Distribution Free Estimation of Heteroskedastic Binary Response Models Using Probit/Logit Criterion Functions , 2013 .

[27]  H. Ishwaran Information in semiparametric mixtures of exponential families , 1999 .

[28]  Jianhua Z. Huang Projection estimation in multiple regression with application to functional ANOVA models , 1998 .

[29]  Jinyong Hahn,et al.  The Efficiency Bound of the Mixed Proportional Hazard Model , 1994 .

[30]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[31]  Xiaohong Chen,et al.  Sieve Quasi Likelihood Ratio Inference on Semi/nonparametric Conditional Moment Models , 2013 .

[32]  A Note of the Rate of Convergence of Estimators of Mixtures of Weibulls , 1998 .

[33]  W. Newey,et al.  Semiparametric Efficiency Bounds , 1990 .

[34]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[35]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[36]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[37]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[38]  W. Wong,et al.  Convergence Rate of Sieve Estimates , 1994 .

[39]  Xiaotong Shen,et al.  Sieve likelihood ratio inference on general parameter space , 2005 .

[40]  Chris Elbers,et al.  True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model , 1982 .

[41]  C. J. Stone,et al.  Large-Sample Inference for Log-Spline Models , 1990 .

[42]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .

[43]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[44]  Xiaohong Chen,et al.  Sieve inference on possibly misspecified semi-nonparametric time series models , 2014 .

[45]  J. Horowitz A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .

[46]  W. Wong,et al.  On Maximum Likelihood Estimation in Infinite-Dimensional Parameter Spaces , 1991 .

[47]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[48]  Brian J. Eastwood,et al.  Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality , 1991, Econometric Theory.

[49]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[50]  Donald W. K. Andrews,et al.  Semiparametric Estimation of the Intercept of a Sample Selection Model , 1998 .