Integrated photonics for infrared spectroscopic sensing

Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-ofcare diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Chalcogenide glasses, the amorphous compounds containing S, Se or Te, have stand out as a promising material for infrared photonic integration given their broadband infrared transparency and compatibility with silicon photonic integration. In this paper, we discuss our recent work exploring integrated chalcogenide glass based photonic devices for IR spectroscopic chemical analysis, including on-chip cavityenhanced chemical sensing and monolithic integration of mid-IR waveguides with photodetectors.

[1]  Bruno Bureau,et al.  Telluride glasses for far infrared photonic applications , 2013 .

[2]  B. Eggleton,et al.  Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth , 2009 .

[3]  Joris Van Campenhout,et al.  Silicon-based heterogeneous photonic integrated circuits for the mid-infrared , 2013 .

[4]  N. Feng,et al.  Low-loss high-index-contrast planar waveguides with graded-index cladding layers. , 2007, Optics express.

[5]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[6]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013, 10th International Conference on Group IV Photonics.

[7]  Yi Yu,et al.  Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. , 2013, Optics express.

[8]  Sasan Fathpour,et al.  Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics , 2013 .

[9]  Richard A. Soref,et al.  Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding , 2014 .

[10]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[11]  Ke Xu,et al.  Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[12]  Hongtao Lin,et al.  Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. , 2014, ACS nano.

[13]  R. Loo,et al.  Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers , 2013, IEEE Photonics Technology Letters.

[14]  Pao Tai Lin,et al.  Si-CMOS compatible materials and devices for mid-IR microphotonics , 2013 .

[15]  Juejun Hu,et al.  Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform. , 2010, Optics express.

[16]  Mathieu Carras,et al.  Ge-rich SiGe waveguides for mid-infrared photonics , 2017, OPTO.

[17]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[18]  O. Boyraz,et al.  Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[19]  Kathleen Richardson,et al.  Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. , 2010, Optics express.

[20]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[21]  A. Seddon A Prospective for New Mid‐Infrared Medical Endoscopy Using Chalcogenide Glasses , 2011 .

[22]  Mathieu Carras,et al.  Low loss SiGe graded index waveguides for mid-IR applications. , 2014, Optics express.

[23]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[24]  Benjamin J Eggleton,et al.  Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. , 2015, Optics express.

[25]  Ludmila I. Ryabova,et al.  Transport properties and photo‐ conductivity of nanocrystalline PbTe(In) films , 2010 .

[26]  Candice Tsay,et al.  Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. , 2010, Optics express.

[27]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[28]  Ray T. Chen,et al.  Experimental Demonstration of Propagation Characteristics of Mid-infrared Photonic Crystal Waveguides in Silicon-on-sapphire References and Links , 2022 .

[29]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[30]  Craig B. Arnold,et al.  A review on solution processing of chalcogenide glasses for optical components , 2013 .

[31]  Kathleen Richardson,et al.  On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors , 2016 .

[32]  William W. Bewley,et al.  Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon , 2016 .

[33]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[34]  Juejun Hu,et al.  Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films , 2008 .

[35]  A. E. Willner,et al.  Silicon-on-Nitride Waveguide With Ultralow Dispersion Over an Octave-Spanning Mid-Infrared Wavelength Range , 2012, IEEE Photonics Journal.

[36]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[37]  D. Thomson,et al.  Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Jean-Emmanuel Broquin,et al.  Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm. , 2011, Optics letters.

[39]  D. Moss,et al.  Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. , 2011, Optics express.

[40]  Gary Hodes,et al.  Effects of solution ph and surface chemistry on the postdeposition growth of chemical bath deposited pbse nanocrystalline films , 2007 .

[41]  Juejun Hu,et al.  Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study , 2011 .

[42]  Hiroshi Fudouzi,et al.  Soft imprint lithography of a bulk chalcogenide glass , 2011 .

[43]  I Molina-Fernández,et al.  Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. , 2016, Optics express.

[44]  Hongtao Lin,et al.  High‐Performance, High‐Index‐Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non‐planar Substrates , 2013 .

[45]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[46]  W S Rabinovich,et al.  Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared. , 2008, Optics letters.

[47]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[48]  Hongtao Lin,et al.  Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration , 2014 .

[49]  Wei Zhang,et al.  Low-loss photonic device in Ge-Sb-S chalcogenide glass. , 2016, Optics letters.

[50]  Richard J. Curry,et al.  Chalcogenide glass thin films and planar waveguides , 2005 .

[51]  Ke Xu,et al.  Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. , 2012, Optics letters.

[52]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[53]  David J. Thomson,et al.  Silicon photonic devices and platforms for the mid-infrared , 2013 .

[54]  Virginie Nazabal,et al.  Infrared optical sensor for CO2 detection , 2009, Optics + Optoelectronics.

[55]  Ciyuan Qiu,et al.  Suspended Si ring resonator for mid-IR application. , 2013, Optics letters.

[56]  C. Arnold,et al.  Chalcogenide glass microlenses by inkjet printing , 2011, Applied optics.

[57]  Junying Li,et al.  On-chip infrared spectroscopic sensing: Redefining the benefits of scaling , 2017, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[58]  J. David Musgraves,et al.  Chalcogenide glass microphotonics : Stepping into the spotlight , 2015 .

[59]  David J. Moss,et al.  Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide , 2014 .

[60]  J. David Musgraves,et al.  Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design , 2013 .

[61]  Kathleen Richardson,et al.  Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films , 2008 .

[62]  Michal Lipson,et al.  On-chip spectrophotometry for bioanalysis using microring resonators , 2011, Biomedical optics express.

[63]  Pao Tai Lin,et al.  On-chip mid-infrared gas detection using chalcogenide glass waveguide , 2016 .

[64]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[65]  Jacklyn Novak,et al.  Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films , 2012 .

[66]  Kathleen Richardson,et al.  Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength. , 2010, Optics letters.

[67]  Arnan Mitchell,et al.  High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. , 2015, Optics express.

[68]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[69]  David J. Moss,et al.  Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. , 2011, Optics express.

[70]  Benjamin J. Eggleton,et al.  On-chip stimulated Brillouin scattering , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[71]  Virginie Nazabal,et al.  Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. , 2016, Optics express.

[72]  Caroline Vigreux,et al.  Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications , 2014 .

[73]  Zinovy Dashevsky,et al.  Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films , 2010 .

[74]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[75]  William W. Bewley,et al.  Quantum cascade laser on silicon , 2016 .

[76]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[77]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[78]  Mathieu Carras,et al.  Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics. , 2017, Optics letters.

[79]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[80]  Juejun Hu,et al.  Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon , 2012 .

[81]  Caroline Vigreux,et al.  Fabrication of far infrared rib waveguides based on Te-Ge-Ga films deposited by co-thermal evaporation , 2008, Optical Systems Design.

[82]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[83]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[84]  P. K. Nair Semiconductor thin films by chemical bath deposition for solar energy related applications , 1998 .

[85]  Hongtao Lin,et al.  Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).