Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates thatmore » model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

[1]  D. Perovich,et al.  Optical properties of melting first‐year Arctic sea ice , 2015 .

[2]  Gary B. Brassington,et al.  Status and future of global and regional ocean prediction systems , 2015 .

[3]  Fraser Davidson,et al.  A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans , 2015 .

[4]  M. Worster,et al.  A physically based parameterization of gravity drainage for sea‐ice modeling , 2014 .

[5]  Peter Toose,et al.  Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals , 2014 .

[6]  D. Feltham,et al.  Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice , 2014 .

[7]  A. Keen,et al.  A sensitivity study of the sea ice simulation in the global coupled climate model, HadGEM3 , 2014 .

[8]  Andrew Ryan,et al.  Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts , 2013 .

[9]  F. Geyer,et al.  Arctic sea ice decline and ice export in the CMIP5 historical simulations , 2013 .

[10]  E. Hunke,et al.  Level-ice melt ponds in the Los Alamos sea ice model, CICE , 2013 .

[11]  Pierre Rampal,et al.  Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends , 2013 .

[12]  J. Meehl,et al.  A Decomposition of Feedback Contributions to Polar Warming Amplification , 2013 .

[13]  T. Fichefet,et al.  On the formulation of snow thermal conductivity in large‐scale sea ice models , 2013 .

[14]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[15]  E. Hunke,et al.  Two modes of sea‐ice gravity drainage: A parameterization for large‐scale modeling , 2013 .

[16]  M. Sofiev,et al.  Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle , 2013 .

[17]  Eleonora P. Zege,et al.  Snow grain size retrieval SGSP from optical satellite data: Validation with ground measurements and detection of snow fall events , 2013 .

[18]  Art B. Owen,et al.  Better estimation of small sobol' sensitivity indices , 2012, TOMC.

[19]  Arnaud Doucet,et al.  Introduction to Special Issue on Monte Carlo Methods in Statistics , 2013, TOMC.

[20]  S. Hendricks,et al.  Changes in Arctic sea ice result in increasing light transmittance and absorption , 2012 .

[21]  S. Wood mgcv:Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation , 2012 .

[22]  Thorsten Markus,et al.  Satellite Observations of Antarctic Sea Ice Thickness and Volume , 2012 .

[23]  D. Bi,et al.  A sea-ice sensitivity study with a global ocean-ice model , 2012 .

[24]  Matthieu Chevallier,et al.  The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic Approach with a Coupled GCM , 2012 .

[25]  Marika M. Holland,et al.  Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea ice , 2012 .

[26]  P. Lu,et al.  A parameterization of the ice‐ocean drag coefficient , 2011 .

[27]  Jody W. Deming,et al.  Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic , 2011, Proceedings of the National Academy of Sciences.

[28]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[29]  Chris Harris,et al.  Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system , 2010 .

[30]  Ola M. Johannessen,et al.  The relation between sea ice thickness and freeboard in the Arctic , 2010 .

[31]  K. Peterson,et al.  Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models. , 2010 .

[32]  James G. Mitchell,et al.  Role of microbial and phytoplanktonic communities in the control of seawater viscosity off East Antarctica (30-80° E) , 2010 .

[33]  Edgar L. Andreas,et al.  Parametrizing turbulent exchange over summer sea ice and the marginal ice zone , 2010 .

[34]  I. Simmonds,et al.  The central role of diminishing sea ice in recent Arctic temperature amplification , 2010, Nature.

[35]  T. W. Horst,et al.  Parameterizing turbulent exchange over sea ice in winter , 2010 .

[36]  Julienne C. Stroeve,et al.  The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models , 2010 .

[37]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[38]  Elizabeth C. Hunke,et al.  Thickness sensitivities in the CICE sea ice model , 2010 .

[39]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[40]  M. Grae Worster,et al.  Desalination processes of sea ice revisited , 2009 .

[41]  Dana E. Veron,et al.  Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent , 2009 .

[42]  Craig M. Lee,et al.  Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007-2008 , 2009 .

[43]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[44]  J. Zhu,et al.  Thermal evolution of permeability and microstructure in sea ice , 2007 .

[45]  M. Holland,et al.  Global atmospheric forcing data for Arctic ice-ocean modeling , 2007 .

[46]  William H. Lipscomb,et al.  Ridging, strength, and stability in high-resolution sea ice models , 2007 .

[47]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[48]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[49]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[50]  L. Mahrt,et al.  Evaluation of the air‐sea bulk formula and sea‐surface temperature variability from observations , 2006 .

[51]  W. Lipscomb,et al.  Sensitivity analysis and parameter tuning scheme for global sea-ice modeling , 2006 .

[52]  Nicolas Le Roux,et al.  The Curse of Highly Variable Functions for Local Kernel Machines , 2005, NIPS.

[53]  Thomas C. Grenfell,et al.  Surface Albedo of the Antarctic Sea Ice Zone , 2005 .

[54]  M. Holland,et al.  Maintenance of the Sea-Ice Edge , 2005 .

[55]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[56]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[57]  Walter B. Tucker,et al.  Thin and thinner: Sea ice mass balance measurements during SHEBA , 2003 .

[58]  Jon C. Helton,et al.  A distribution-free test for the relationship between model input and output when using Latin hypercube sampling , 2003, Reliab. Eng. Syst. Saf..

[59]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[60]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[61]  Teruo Aoki,et al.  Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface , 2000 .

[62]  S. Wood Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .

[63]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[64]  Mark A. Hopkins,et al.  Four stages of pressure ridging , 1998 .

[65]  M. König,et al.  The thermal conductivity of seasonal snow , 1997, Journal of Glaciology.

[66]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[67]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[68]  William D. Hibler,et al.  Ridging and strength in modeling the thickness distribution of Arctic sea ice , 1995 .

[69]  R. Tibshirani,et al.  Generalized additive models for medical research , 1995, Statistical methods in medical research.

[70]  A. Fowler,et al.  Compositional convection in the solidification of binary alloys , 1994, Journal of Fluid Mechanics.

[71]  A. Stössel Sensitivity of Southern Ocean sea-ice simulations to different atmospheric forcing algorithms , 1992 .

[72]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[73]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[74]  D. Rothrock,et al.  The energetics of the plastic deformation of pack ice by ridging , 1975 .