Molecular packing determines singlet exciton fission in organic semiconductors.

Carrier multiplication by singlet exciton fission enhances photovoltaic conversion efficiencies in organic solids. This decay of one singlet exciton into two triplet states allows the extraction of up to two electrons per harvested photon and, hence, promises to overcome the Shockley–Queisser limit. However, the microscopic mechanism of singlet exciton fission, especially the relation between molecular packing and electronic response, remains unclear, which therefore hampers the systematic improvement of organic photovoltaic devices. For the model system perfluoropentacene, we experimentally show that singlet exciton fission is greatly enhanced for a slip-stacked molecular arrangement by addressing different crystal axes featuring different packing schemes. This reveals that the fission process strongly depends on the intermolecular coupling: slip-stacking favors delocalization of excitations and allows for efficient exciton fission, while face-to-edge molecular orientations commonly found in the prevailing herringbone molecular stacking patterns even suppress it. Furthermore, we clarify the controversially debated role of excimer states as intermediary rather than competitive or precursory. Our detailed findings serve as a guideline for the design of next-generation molecular materials for application in future organic light-harvesting devices exploiting singlet exciton fission.

[1]  Steven G. Louie,et al.  Ab initio calculation of the electronic and optical properties of solid pentacene , 2003 .

[2]  Ariel Biller,et al.  Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles , 2012 .

[3]  B. Stevens Evidence for the Photo-Association of Aromatic Hydrocarbons in Fluid Media , 1961, Nature.

[4]  M. Karplus,et al.  Semiclassical trajectory approach to photoisomerization , 1975 .

[5]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[6]  S. Shirai,et al.  Ab initio studies of aromatic excimers using multiconfiguration quasi-degenerate perturbation theory. , 2011, The journal of physical chemistry. A.

[7]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[8]  P. Jakob,et al.  Vibrational Davydov Splittings and Collective Mode Polarizations in Oriented Organic Semiconductor Crystals , 2012 .

[9]  R. Scholz,et al.  Photoluminescence spectroscopy of pure pentacene, perfluoropentacene, and mixed thin films. , 2012, The Journal of chemical physics.

[10]  Fumio Sato,et al.  Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. , 2004, Journal of the American Chemical Society.

[11]  F. Schreiber,et al.  Optical properties of pentacene and perfluoropentacene thin films. , 2007, The Journal of chemical physics.

[12]  David Beljonne,et al.  Singlet exciton fission in solution. , 2013, Nature chemistry.

[13]  H. Schaefer,et al.  The lowest triplet electronic states of polyacenes and perfluoropolyacenes , 2007 .

[14]  N. Armstrong,et al.  Ultrathin Films of Perylenedianhydride and Perylenebis(dicarboximide) Dyes on (001) Alkali Halide Surfaces , 1998 .

[15]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[16]  R. Mathies,et al.  Conical intersection dynamics of the primary photoisomerization event in vision , 2010, Nature.

[17]  Th. Förster,et al.  Ein Konzentrationsumschlag der Fluoreszenz des Pyrens , 1954, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[18]  C. E. Swenberg,et al.  Bimolecular radiationless transitions in crystalline tetracene , 1968 .

[19]  Y. Olivier,et al.  Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. , 2013, Physical review letters.

[20]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[21]  Sebastian Reineke,et al.  External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell , 2013, Science.

[22]  T. Breuer,et al.  Epitaxial growth of perfluoropentacene films with predefined molecular orientation: A route for single-crystal optical studies , 2011 .

[23]  Jean-Luc Brédas,et al.  Impact of perfluorination on the charge-transport parameters of oligoacene crystals. , 2009, Journal of the American Chemical Society.

[24]  Manuel Ligges,et al.  The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. , 2012, Nature chemistry.

[25]  L. Kaake,et al.  Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer , 2011, Science.

[26]  B. Nickel,et al.  Ultrafast exciton relaxation in microcrystalline pentacene films. , 2007, Physical review letters.

[27]  B. Stevens,et al.  Radiative Life-time of the Pyrene Dimer and the Possible Role of Excited Dimers in Energy Transfer Processes , 1960, Nature.

[28]  Josef Michl,et al.  Recent advances in singlet fission. , 2013, Annual review of physical chemistry.

[29]  E. E. Nikitin THEORY OF NON-ADIABATIC VIBRATIONAL RELAXATION IN ATOM-MOLECULAR COLLISIONS. I. WEAK SPIN-ORBITAL COUPLING , 1964 .

[30]  Jeffrey B. Neaton,et al.  Low-Energy Charge-Transfer Excitons in Organic Solids from First-Principles: The Case of Pentacene , 2013 .

[31]  Paul M Zimmerman,et al.  Singlet fission in pentacene through multi-exciton quantum states. , 2010, Nature chemistry.

[32]  John E Anthony,et al.  The larger acenes: versatile organic semiconductors. , 2008, Angewandte Chemie.