Information extraction from remotely sensed data

[1]  John R. Jensen,et al.  Extraction of smooth cordgrass (spartina alterniflora) biomass and leaf area index parameters from high resolution imagery , 1998 .

[2]  Sunil Narumalani,et al.  Utilizing geometric attributes of spatial information to improve digital image classification , 1998 .

[3]  Peter M. Atkinson,et al.  On estimating measurement error in remotely sensed images with the variogram , 1997 .

[4]  Edward C. Uberbacher,et al.  Image exploitation using multisensor/neural network systems , 1995, Other Conferences.

[5]  Stephen E. Reichenbach,et al.  Accessing Earth system science data and applications through high-bandwidth networks , 1995 .

[6]  John R. Jensen,et al.  Issues involving the creation of digital elevation models and terrain corrected orthoimagery using soft‐copy photogrammetry , 1995 .

[7]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[8]  N. Campbell,et al.  Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification , 1992 .

[9]  Perry J. Hardin,et al.  Fast Nearest Neighbor Classification Methods for Multispectral Imagery , 1992 .

[10]  K. Novak RECTIFICATION OF DIGITAL IMAGERY , 1992 .

[11]  Robert O. Green,et al.  Radiative-transfer-based retrieval of reflectance from calibrated radiance imagery measured by an imaging spectrometer for lithological mapping of the Clark Mountains, California , 1990, Other Conferences.

[12]  George F. Hepner,et al.  Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification , 1990 .

[13]  R. Crippen A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TM P-tape imagery , 1989 .

[14]  A. Goetz,et al.  Terrestrial imaging spectroscopy , 1988 .

[15]  R. B. Burnett,et al.  Single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies , 1986 .

[16]  Richard L. Thompson,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. IV. Total inversion of the SAIL model , 1984 .

[17]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  B. Gorte,et al.  Land-use and Catchment Characteristics , 2000 .

[19]  S. Khorram,et al.  Remotely Sensed Change Detection Based on Artificial Neural Networks , 1999 .

[20]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[21]  Alan P. Wang,et al.  Terrestrial Radiative Transfer , 1998 .

[22]  D. Helder,et al.  A technique for the reduction of banding in Landsat Thematic Mapper Images , 1992 .

[23]  P. Gong,et al.  Frequency-based contextual classification and gray-level vector reduction for land-use identification , 1992 .

[24]  J. Verdin,et al.  Automated update of an irrigated lands GIS using SPOT HRV imagery , 1990 .

[25]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .