An Efficient Spline Collocation Method for a Nonlinear Fourth-Order Reaction Subdiffusion Equation

[1]  Cui-Cui Ji,et al.  Numerical Schemes for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Model in a Double-Layered Nanoscale Thin Film , 2019, Journal of Scientific Computing.

[2]  Yubin Yan,et al.  A higher order numerical method for time fractional partial differential equations with nonsmooth data , 2018, J. Comput. Phys..

[3]  Jim Douglas,et al.  Collocation Methods for Parabolic Equations in a Single Space Variable , 1974 .

[4]  Zhoushun Zheng,et al.  An Exponentially Convergent Scheme in Time for Time Fractional Diffusion Equations with Non-smooth Initial Data , 2019, J. Sci. Comput..

[5]  Seakweng Vong,et al.  Compact Finite Difference Scheme for the Fourth-Order Fractional Subdiffusion System , 2014 .

[6]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[7]  Graeme Fairweather,et al.  Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables , 1993 .

[8]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[9]  Chengming Huang,et al.  A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations , 2019, Numerical Algorithms.

[10]  Zhimin Zhang,et al.  Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives , 2019, J. Sci. Comput..

[11]  Da Xu,et al.  An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation , 2020 .

[12]  Meng Li,et al.  Nonconforming Virtual Element Method for the Time Fractional Reaction–Subdiffusion Equation with Non-smooth Data , 2019, Journal of Scientific Computing.

[13]  Hong Sun,et al.  The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation , 2019, J. Sci. Comput..

[14]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[15]  Jie Shen,et al.  An Efficient Space–Time Method for Time Fractional Diffusion Equation , 2019, Journal of Scientific Computing.

[16]  Pin Lyu,et al.  A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation , 2019, Journal of Scientific Computing.

[17]  Yang Liu,et al.  Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation , 2017, J. Comput. Phys..

[18]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[19]  Mary F. Wheeler,et al.  A $C^1 $ Finite Element Collocation Method for Elliptic Equations , 1980 .

[20]  Wanrong Cao,et al.  An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution , 2017, J. Sci. Comput..

[21]  Jiwei Zhang,et al.  Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations , 2018, Journal of Scientific Computing.

[22]  Shuying Zhai,et al.  Error Analysis and Numerical Simulations of Strang Splitting Method for Space Fractional Nonlinear Schrödinger Equation , 2019, Journal of Scientific Computing.

[23]  Hong-lin Liao,et al.  A fourth-order compact solver for fractional-in-time fourth-order diffusion equations , 2019, ArXiv.

[24]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[25]  Yubin Yan,et al.  An Analysis of the Modified L1 Scheme for Time-Fractional Partial Differential Equations with Nonsmooth Data , 2018, SIAM J. Numer. Anal..

[26]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[27]  Da Xu,et al.  An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation , 2014, J. Sci. Comput..

[28]  Jing Guo,et al.  Time two-grid algorithm based on finite difference method for two-dimensional nonlinear fractional evolution equations , 2020 .

[29]  Da Xu,et al.  BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels , 2019, Comput. Math. Appl..

[30]  Yubin Yan,et al.  High‐order ADI orthogonal spline collocation method for a new 2D fractional integro‐differential problem , 2020, Mathematical Methods in the Applied Sciences.

[31]  Yukun An,et al.  Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation , 2008 .

[32]  Cui-Cui Ji,et al.  Numerical Algorithms with High Spatial Accuracy for the Fourth-Order Fractional Sub-Diffusion Equations with the First Dirichlet Boundary Conditions , 2016, J. Sci. Comput..

[33]  Zhimin Zhang,et al.  Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction , 2019, J. Sci. Comput..