New extragradient method for a class of equilibrium problems in Hilbert spaces

The paper proposes a new extragradient algorithm for solving strongly pseudomonotone equilibrium problems which satisfy a Lipschitz-type condition recently introduced by Mastroeni in auxiliary problem principle. The main novelty of the paper is that the algorithm generates the strongly convergent sequences in Hilbert spaces without the prior knowledge of Lipschitz-type constants and any hybrid method. Several numerical experiments on a test problem are also presented to illustrate the convergence of the algorithm.

[1]  G. Cohen Auxiliary problem principle extended to variational inequalities , 1988 .

[2]  A. Iusem,et al.  Iterative Algorithms for Equilibrium Problems , 2003 .

[3]  Van Hieu Dang An extension of hybrid method without extrapolation step to equilibrium problems , 2016 .

[4]  Shin Min Kang,et al.  Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method , 2010, Comput. Math. Appl..

[5]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[6]  L. Muu,et al.  Convergence of an adaptive penalty scheme for finding constrained equilibria , 1992 .

[7]  Muhammad Aslam Noor,et al.  Strong Convergence of a Modified Extragradient Method to the Minimum-Norm Solution of Variational Inequalities , 2012 .

[8]  D. Hieu An extension of hybrid method without extrapolation step to equilibrium problems , 2015, 1510.08201.

[9]  Mihai Postolache,et al.  Construction algorithms for a class of monotone variational inequalities , 2016, Optim. Lett..

[10]  Igor V. Konnov Regularized Penalty Method for General Equilibrium Problems in Banach Spaces , 2015, J. Optim. Theory Appl..

[11]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[12]  Pham Ky Anh,et al.  Modified hybrid projection methods for finding common solutions to variational inequality problems , 2017, Comput. Optim. Appl..

[13]  G. Mastroeni On Auxiliary Principle for Equilibrium Problems , 2003 .

[14]  Pham Ky Anh,et al.  Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings , 2015, Numerical Algorithms.

[15]  Dang Van Hieu,et al.  Parallel Extragradient-Proximal Methods for Split Equilibrium Problems , 2015, 1511.02474.

[16]  Phan Tu Vuong,et al.  A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces , 2016, J. Glob. Optim..

[17]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[18]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[19]  Pham Duy Khanh,et al.  A New Extragradient Method for Strongly Pseudomonotone Variational Inequalities , 2016 .

[20]  Igor V. Konnov,et al.  Partial proximal point method for nonmonotone equilibrium problems , 2006, Optim. Methods Softw..

[21]  Antonino Maugeri,et al.  Equilibrium problems and variational models , 2003 .

[22]  N. Shahzad,et al.  Minimum-norm solution of variational inequality and fixed point problem in banach spaces , 2015 .

[23]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[24]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[25]  J. Strodiot,et al.  On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space , 2015 .

[26]  A. Latif,et al.  Hybrid viscosity methods for equilibrium problems, variational inequalities, and fixed point problems , 2016 .

[27]  R. Cooke Real and Complex Analysis , 2011 .

[28]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[29]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[30]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[31]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[32]  Le Dung Muu,et al.  On Existence and Solution Methods for Strongly Pseudomonotone Equilibrium Problems , 2015 .

[33]  A. Iusem,et al.  On the proximal point method for equilibrium problems in Hilbert spaces , 2010 .

[34]  Jen-Chih Yao,et al.  Convergence Theorem for Equilibrium Problems and Fixed Point Problems of Infinite Family of Nonexpansive Mappings , 2007 .

[35]  Jean Jacques Strodiot,et al.  A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems , 2013, J. Glob. Optim..

[36]  Dang Van Hieu Parallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappings , 2016 .

[37]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[38]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[39]  Rudong Chen,et al.  Schemes for finding minimum-norm solutions of variational inequalities , 2010 .