First-Order System Least Squares for Geometrically Nonlinear Elasticity
暂无分享,去创建一个
Thomas A. Manteuffel | Stephen F. McCormick | Chad R. Westphal | J. G. Schmidt | T. Manteuffel | S. McCormick | M. Brezina | C. Westphal | J. Schmidt | H. Sterck | S. MacLachlan | J. Brannick | Luke Olson | Oliver Röhrle | Schorsh Schmidt | J. Heys | Eunjung Lee
[1] Thomas A. Manteuffel,et al. Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part II , 2005, SIAM J. Numer. Anal..
[2] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[3] Thomas A. Manteuffel,et al. Multilevel First-Order System Least Squares for Elliptic Grid Generation , 2003, SIAM J. Numer. Anal..
[4] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Spatial Linear Elasticity: Pure Traction , 2000, SIAM J. Numer. Anal..
[5] Jinchao Xu,et al. Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains , 2003, J. Num. Math..
[6] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .
[7] Pablo Pedregal,et al. Variational methods in nonlinear elasticity , 1987 .
[8] T. Manteuffel,et al. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .
[9] Thomas A. Manteuffel,et al. LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .
[10] Jinchao Xu,et al. Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..
[11] V. Maz'ya,et al. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .
[12] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[13] Z. Cai,et al. An adaptive least squares mixed finite element method for the stress‐displacement formulation of linear elasticity , 2005 .
[14] Joseph E. Pasciak,et al. New estimates for multilevel algorithms including the V-cycle , 1993 .
[15] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[16] J. Roßmann,et al. Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .
[17] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[18] Joseph E. Pasciak,et al. A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..
[19] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[20] Thomas A. Manteuffel,et al. First-Order System Least Squares For Linear Elasticity: Numerical Results , 1999, SIAM J. Sci. Comput..
[21] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[22] M. Gunzburger,et al. Analysis of least squares finite element methods for the Stokes equations , 1994 .
[23] Thomas A. Manteuffel,et al. Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I , 2005, SIAM J. Numer. Anal..
[24] R. Rannacher,et al. Extrapolation techniques for reducing the pollution effect or reentrant corners in the finite element method , 1987 .
[25] Zhiqiang Cai,et al. Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..
[26] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[27] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[28] Seokchan Kim,et al. A Finite Element Method Using Singular Functions for the Poisson Equation: Corner Singularities , 2001, SIAM J. Numer. Anal..
[29] William L. Briggs,et al. A multigrid tutorial , 1987 .
[30] Thomas A. Manteuffel,et al. First-Order System Least Squares for the Stokes and Linear Elasticity Equations: Further Results , 2000, SIAM J. Sci. Comput..
[31] Vladimir Maz’ya,et al. Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .
[32] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[33] P. Ciarlet,et al. Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .
[34] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[35] Zhiqiang Cai,et al. First-Order System Least Squares for the Stress-Displacement Formulation: Linear Elasticity , 2003, SIAM J. Numer. Anal..
[36] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[37] Thomas A. Manteuffel,et al. Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations , 2003, SIAM J. Numer. Anal..
[38] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[39] Dominique Leguillon,et al. Computation of singular solutions in elliptic problems and elasticity , 1987 .
[40] Thomas A. Manteuffel,et al. First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..
[41] A. Friedman. Foundations of modern analysis , 1970 .
[42] T. A. Manteuffel,et al. First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity , 1996 .