First-Order System Least Squares for Geometrically Nonlinear Elasticity

We present a first-order system least-squares (FOSLS) method to approximate the solution to the equations of geometrically nonlinear elasticity in two dimensions. With assumptions of regularity on the problem, we show $H^1$ equivalence of the norm induced by the FOSLS functional in the case of pure displacement boundary conditions as well as local convergence of Newton’s method in a nested iteration setting. Theoretical results hold for deformations satisfying a small strain assumption, a set we show to be largely coincident with the set of deformations allowed by the model. Numerical results confirm optimal multigrid performance and finite element approximation rates of the discrete functional with a total work bounded by about 25 fine-grid relaxation sweeps.

[1]  Thomas A. Manteuffel,et al.  Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part II , 2005, SIAM J. Numer. Anal..

[2]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[3]  Thomas A. Manteuffel,et al.  Multilevel First-Order System Least Squares for Elliptic Grid Generation , 2003, SIAM J. Numer. Anal..

[4]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Spatial Linear Elasticity: Pure Traction , 2000, SIAM J. Numer. Anal..

[5]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains , 2003, J. Num. Math..

[6]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .

[7]  Pablo Pedregal,et al.  Variational methods in nonlinear elasticity , 1987 .

[8]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[9]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[10]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..

[11]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[12]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[13]  Z. Cai,et al.  An adaptive least squares mixed finite element method for the stress‐displacement formulation of linear elasticity , 2005 .

[14]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[15]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[16]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[17]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[18]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[19]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[20]  Thomas A. Manteuffel,et al.  First-Order System Least Squares For Linear Elasticity: Numerical Results , 1999, SIAM J. Sci. Comput..

[21]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[22]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[23]  Thomas A. Manteuffel,et al.  Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I , 2005, SIAM J. Numer. Anal..

[24]  R. Rannacher,et al.  Extrapolation techniques for reducing the pollution effect or reentrant corners in the finite element method , 1987 .

[25]  Zhiqiang Cai,et al.  Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..

[26]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[27]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[28]  Seokchan Kim,et al.  A Finite Element Method Using Singular Functions for the Poisson Equation: Corner Singularities , 2001, SIAM J. Numer. Anal..

[29]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[30]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for the Stokes and Linear Elasticity Equations: Further Results , 2000, SIAM J. Sci. Comput..

[31]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[32]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[33]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[34]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[35]  Zhiqiang Cai,et al.  First-Order System Least Squares for the Stress-Displacement Formulation: Linear Elasticity , 2003, SIAM J. Numer. Anal..

[36]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[37]  Thomas A. Manteuffel,et al.  Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations , 2003, SIAM J. Numer. Anal..

[38]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[39]  Dominique Leguillon,et al.  Computation of singular solutions in elliptic problems and elasticity , 1987 .

[40]  Thomas A. Manteuffel,et al.  First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..

[41]  A. Friedman Foundations of modern analysis , 1970 .

[42]  T. A. Manteuffel,et al.  First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity , 1996 .