The Creation of Strange Non-chaotic Attractors in Non-smooth Saddle-node Bifurcations
暂无分享,去创建一个
[1] Tobias Jäger,et al. Quasiperiodically forced interval maps with negative Schwarzian derivative , 2003 .
[2] R. de la Llave,et al. Manifolds on the verge of a hyperbolicity breakdown. , 2006, Chaos.
[3] J. Heagy,et al. The birth of strange nonchaotic attractors , 1994 .
[4] Kristian Bjerklöv. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.
[5] Ott,et al. Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence. , 1985, Physical review letters.
[6] Ott,et al. Experimental observation of a strange nonchaotic attractor. , 1990, Physical review letters.
[7] Jürgen Kurths,et al. Strange non-chaotic attractor in a quasiperiodically forced circle map , 1995 .
[8] J. Stark,et al. Locating bifurcations in quasiperiodically forced systems , 1995 .
[9] Gerhard Keller. A note on strange nonchaotic attractors , 1996 .
[10] Hinke M. Osinga,et al. Multistability and nonsmooth bifurcations in the Quasiperiodically forced Circle Map , 2001, Int. J. Bifurc. Chaos.
[11] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[12] A nonperturbative Eliasson's reducibility theorem , 2005, math/0503356.
[13] À. Haro,et al. Strange nonchaotic attractors in Harper maps. , 2005, Chaos.
[14] G. Keller,et al. The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.
[15] Grebogi,et al. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. , 1989, Physical review. A, General physics.
[16] W. Ditto,et al. Dynamics of a two-frequency parametrically driven duffing oscillator , 1991 .
[17] Ramakrishna Ramaswamy,et al. On the dynamics of the critical Harper map , 2004 .
[18] Bulsara,et al. Observation of a strange nonchaotic attractor in a multistable potential. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[19] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[20] Rob Sturman,et al. Semi-uniform ergodic theorems and applications to forced systems , 2000 .
[21] Svetlana Ya. Jitomirskaya. Metal-insulator transition for the almost Mathieu operator , 1999 .
[22] Ramakrishna Ramaswamy,et al. Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.
[23] Kristian Bjerklöv. Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum , 2007 .
[24] R. Bowen. Entropy for group endomorphisms and homogeneous spaces , 1971 .
[25] Thomas M. Antonsen,et al. Quasiperiodically forced dynamical systems with strange nonchaotic attractors , 1987 .
[26] Ramakrishna Ramaswamy,et al. Bifurcations and transitions in the quasiperiodically driven logistic map , 2000 .
[27] Paul Glendinning,et al. Global attractors of pinched skew products , 2002 .
[28] Lennart Carleson,et al. The Dynamics of the Henon Map , 1991 .
[29] Tobias H. Jaeger. On the structure of strange non-chaotic attractors in pinched skew products , 2006, Ergodic Theory and Dynamical Systems.
[30] J. Stark. Regularity of invariant graphs for forced systems , 1999, Ergodic Theory and Dynamical Systems.
[31] Ulrike Feudel,et al. Characterizing strange nonchaotic attractors. , 1995, Chaos.
[32] J. Stark,et al. Towards a Classification for Quasiperiodically Forced Circle Homeomorphisms , 2005, math/0502129.
[33] Paul Glendinning. Intermittency and strange nonchaotic attractors in quasi-periodically forced circle maps , 1998 .
[34] Paul Glendinning,et al. Non-smooth pitchfork bifurcations , 2004 .
[35] Transitive sets for quasi-periodically forced monotone maps , 2003 .
[36] Kristian Bjerklöv. Dynamical Properties of Quasi-periodic Schrödinger Equations , 2003 .
[37] Ott,et al. Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.
[38] Rob Sturman,et al. Scaling of intermittent behaviour of a strange nonchaotic attractor , 1999 .
[39] V. Araújo. Random Dynamical Systems , 2006, math/0608162.
[40] A. Katok,et al. Cocycles, cohomology and combinatorial constructions in ergodic theory , 2001 .
[41] Annette Witt,et al. Birth of strange nonchaotic attractors due to interior crisis , 1997 .
[42] A Sharkovskii-type theorem for minimally forced interval maps , 2005 .
[43] The structure of mode-locked regions in quasi-periodically forced circle maps , 1999 .
[44] J. Milnor. On the concept of attractor , 1985 .
[45] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[46] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[47] Artur Avila,et al. Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .