The Creation of Strange Non-chaotic Attractors in Non-smooth Saddle-node Bifurcations

The author proposes a general mechanism by which strange non-chaotic attractors (SNA) are created during the collision of invariant curves in quasiperiodically forced systems. This mechanism, and its implementation in different models, is first discussed on an heuristic level and by means of simulations. In the considered examples, a stable and an unstable invariant circle undergo a saddle-node bifurcation, but instead of a neutral invariant curve there exists a strange non-chaotic attractor-repeller pair at the bifurcation point. This process is accompanied by a very characteristic behaviour of the invariant curves prior to their collision, which the author calls 'exponential evolution of peaks'.

[1]  Tobias Jäger,et al.  Quasiperiodically forced interval maps with negative Schwarzian derivative , 2003 .

[2]  R. de la Llave,et al.  Manifolds on the verge of a hyperbolicity breakdown. , 2006, Chaos.

[3]  J. Heagy,et al.  The birth of strange nonchaotic attractors , 1994 .

[4]  Kristian Bjerklöv Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.

[5]  Ott,et al.  Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence. , 1985, Physical review letters.

[6]  Ott,et al.  Experimental observation of a strange nonchaotic attractor. , 1990, Physical review letters.

[7]  Jürgen Kurths,et al.  Strange non-chaotic attractor in a quasiperiodically forced circle map , 1995 .

[8]  J. Stark,et al.  Locating bifurcations in quasiperiodically forced systems , 1995 .

[9]  Gerhard Keller A note on strange nonchaotic attractors , 1996 .

[10]  Hinke M. Osinga,et al.  Multistability and nonsmooth bifurcations in the Quasiperiodically forced Circle Map , 2001, Int. J. Bifurc. Chaos.

[11]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[12]  A nonperturbative Eliasson's reducibility theorem , 2005, math/0503356.

[13]  À. Haro,et al.  Strange nonchaotic attractors in Harper maps. , 2005, Chaos.

[14]  G. Keller,et al.  The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.

[15]  Grebogi,et al.  Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. , 1989, Physical review. A, General physics.

[16]  W. Ditto,et al.  Dynamics of a two-frequency parametrically driven duffing oscillator , 1991 .

[17]  Ramakrishna Ramaswamy,et al.  On the dynamics of the critical Harper map , 2004 .

[18]  Bulsara,et al.  Observation of a strange nonchaotic attractor in a multistable potential. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[20]  Rob Sturman,et al.  Semi-uniform ergodic theorems and applications to forced systems , 2000 .

[21]  Svetlana Ya. Jitomirskaya Metal-insulator transition for the almost Mathieu operator , 1999 .

[22]  Ramakrishna Ramaswamy,et al.  Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.

[23]  Kristian Bjerklöv Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum , 2007 .

[24]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[25]  Thomas M. Antonsen,et al.  Quasiperiodically forced dynamical systems with strange nonchaotic attractors , 1987 .

[26]  Ramakrishna Ramaswamy,et al.  Bifurcations and transitions in the quasiperiodically driven logistic map , 2000 .

[27]  Paul Glendinning,et al.  Global attractors of pinched skew products , 2002 .

[28]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[29]  Tobias H. Jaeger On the structure of strange non-chaotic attractors in pinched skew products , 2006, Ergodic Theory and Dynamical Systems.

[30]  J. Stark Regularity of invariant graphs for forced systems , 1999, Ergodic Theory and Dynamical Systems.

[31]  Ulrike Feudel,et al.  Characterizing strange nonchaotic attractors. , 1995, Chaos.

[32]  J. Stark,et al.  Towards a Classification for Quasiperiodically Forced Circle Homeomorphisms , 2005, math/0502129.

[33]  Paul Glendinning Intermittency and strange nonchaotic attractors in quasi-periodically forced circle maps , 1998 .

[34]  Paul Glendinning,et al.  Non-smooth pitchfork bifurcations , 2004 .

[35]  Transitive sets for quasi-periodically forced monotone maps , 2003 .

[36]  Kristian Bjerklöv Dynamical Properties of Quasi-periodic Schrödinger Equations , 2003 .

[37]  Ott,et al.  Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.

[38]  Rob Sturman,et al.  Scaling of intermittent behaviour of a strange nonchaotic attractor , 1999 .

[39]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[40]  A. Katok,et al.  Cocycles, cohomology and combinatorial constructions in ergodic theory , 2001 .

[41]  Annette Witt,et al.  Birth of strange nonchaotic attractors due to interior crisis , 1997 .

[42]  A Sharkovskii-type theorem for minimally forced interval maps , 2005 .

[43]  The structure of mode-locked regions in quasi-periodically forced circle maps , 1999 .

[44]  J. Milnor On the concept of attractor , 1985 .

[45]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[46]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[47]  Artur Avila,et al.  Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .