Metallaboranes of the Early Transition Metals: Direct Synthesis and Characterization of [{(eta5-C5Me5)Ta}2BnHm] (n=4, m=10; n=5, m=11), [{(eta5-C5Me5)Ta}2B5H10(C6H4CH3)], and [{(eta5-C5Me5)TaCl}2B5H11].

Reaction of [Cp*TaCl4] (Cp*=eta5-C5Me5) with a sixfold excess of LiBH(4)thf followed by BH3thf in toluene at 100 degrees C led to the isolation of hydrogen-rich metallaboranes [(Cp*Ta)2B4H10] (1), [(Cp*Ta)2B5H11] (2), [(Cp*Ta)2B5H10(C6H4CH3)] (3), and [(Cp*TaCl)2B5H11] (4) in modest yield. Compounds 1-3 are air- and moisture-sensitive but 4 is reasonably stable in air. Their structures are predicted by the electron-counting rules to be a bicapped tetrahedron (1), bicapped trigonal bipyramids (2, 3), and a nido structure based on a closo dodecahedron 4. Yellow tantalaborane 1 has a nido geometry with C2v symmetry and is isostructural with [(Cp*M)2B4H8] (M=Cr and Re); whereas 2 and 3 are C3v-symmetric and isostructural with [(Cp*M)2B5H9] (M=Cr, Mo, W) and [(Cp*ReH)2B5Cl5]. The most remarkable feature of 4 is the presence of a hydride ligand bridging the ditantalum center to form a symmetrical tantalaborane cluster with a long Ta--Ta bond (3.22 A). Cluster 4 is a rare example of electronically unsaturated metallaborane containing four TaHB bonds. All these new metallaboranes have been characterized by mass spectrometry, 1H, 11B, and 13C NMR spectroscopy, and elemental analysis, and the structural types were unequivocally established by crystallographic analysis of 1-4.

[1]  A. Vega,et al.  Linked and Fused Tungstaborane Clusters: Synthesis, Characterization, and Electronic Structures ofbis-{(η5-C5Me5W)2B5H8}2and (η5-C5Me5W)2{Fe(CO)3}nB6-nH10-n,n= 0, 1† , 2007 .

[2]  J. Kennedy The Polyhedral Metallaboranes Part I. Metallaborane Clusters with Seven Vertices and Fewer , 2007 .

[3]  J. Kennedy The Polyhedral Metallaboranes Part II. Metallaborane Clusters with Eight Vertices and More , 2007 .

[4]  G. Girolami,et al.  Synthesis and characterization of the octahydrotriborate complexes Cp*V(B3H8)2 and Cp*Cr(B3H8)2 and the unusual cobaltaborane cluster Cp*2Co2(B6H14). , 2006, Journal of the American Chemical Society.

[5]  T. Fehlner,et al.  Synthesis and characterization of [exo-BH2(Cp*M)2B9H14] (M = Ru, Re), and the conversion of the ruthenaborane into [(Cp*Ru)2B10H16] with an open cluster framework based on a capped truncated tetrahedron. , 2005, Angewandte Chemie.

[6]  T. Fehlner,et al.  Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. , 2004, Journal of the American Chemical Society.

[7]  T. Fehlner,et al.  Transition-metal variation as a probe of the origins of hypoelectronic metallaboranes: eight- and ten-vertex open ruthenaboranes. , 2003, Angewandte Chemie.

[8]  T. Fehlner,et al.  Comparison of the geometric and molecular orbital structures of (Cp*Cr)2B4H8 and (Cp*Re)2B4H8, Cp*=η5-C5Me5. Structural consequences of delocalized electronic unsaturation in a metallaborane cluster , 2000 .

[9]  L. Sneddon,et al.  Transition-Metal-Promoted Reactions of Boron Hydrides. 16. Platinum- and Palladium-Catalyzed Olefin Addition and Olefin Dehydrogenative Borylation Reactions of arachno-6,8-C2B7H13: Syntheses and Structural Characterizations of 7-R-arachno-6,8-C2B7H12 and 7-(trans-R-CHCH)-arachno-6,8-C2B7H12 , 2000 .

[10]  Lei,et al.  Fine-tuning of metallaborane geometries: chemistry of iridaboranes derived from the reaction of , 2000, Chemistry.

[11]  T. Fehlner,et al.  Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5) , 1999 .

[12]  T. Fehlner,et al.  MOLECULAR ORBITAL ANALYSIS OF THE TREND IN 11B NMR CHEMICAL SHIFTS FOR (CP*M)2B5H9 (M = CR, MO, W; CP* = ETA 5-C5ME5) , 1999 .

[13]  J. Kennedy,et al.  Isolation and Structure of [(PPh3)3(PPh2)2Pd4B20H16]. A Possible Prognostic for New Globular Borane-Based Cluster Architectures , 1999 .

[14]  T. Fehlner,et al.  Synthesis of Mono- and Ditungstaboranes from Reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5Me5). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center , 1999 .

[15]  F. Cotton,et al.  Low-Valent Ditantalum Complex Ta2(μ-BH3)(μ-dmpm)3(η2-BH4)2: First Dinuclear Compound Containing a Bridging BH3 Group with Direct Ta−B Bonds , 1998 .

[16]  T. Fehlner,et al.  Synthesis and Characterization of Cp(3)Ru(3)B(3)H(8), Cp = eta(5)-C(5)Me(5), Exhibiting a Capped Nido Geometry. Cluster Geometry Driven by Hydrogen Bridging. , 1998, Inorganic chemistry.

[17]  T. Fehlner,et al.  Synthesis of Novel Molybdaboranes from (η5-C5R5)MoCln Precursors (R = H, Me; n = 1, 2, 4) , 1998 .

[18]  T. Fehlner,et al.  SEARCH FOR A GENERAL ROUTE TO METALLABORANES VIA THE REACTION OF MONOCYCLOPENTADIENYL METAL CHLORIDES WITH MONOBORANE. SYNTHESIS AND REACTIVITY OF THE RHODABORANE NIDO-1-CL-2,3-(ETA 5-C5ME5)RH2B3H6 , 1998 .

[19]  T. Fehlner,et al.  Cluster Expansion Reactions of Group 6 Metallaboranes. Syntheses, Crystal Structures, and Spectroscopic Characterizations of (Cp*Cr)2B5H9, (Cp*Cr)2B4H8Fe(CO)3, (Cp*Cr)2B4H7Co(CO)3, and (Cp*Mo)2B5H9Fe(CO)3 , 1998 .

[20]  J. Kennedy,et al.  B-frame supported bimetallics. [(PMe2ph)2PtB9H11Ru(η6-isoPrC6H4Me)] and [(PMe2ph)2PtB9H9Ru(η6-isoPrC6H4Me)]; an interesting pair of electron-deficient nido and closo geometries , 1998 .

[21]  T. Fehlner,et al.  Synthesis and characterization of the nine-atom, rhena- and tungsta-boranes (Cp*Re)2B7H7 and (Cp*W)2B7H9, Cp* = η5-C5Me5. Molecular mimics of hypoelectronic main-group clusters in Zintl phases , 1998 .

[22]  T. Fehlner,et al.  Cp*TaCl2B4H8: synthesis, crystal structure and spectroscopic characterization of an air-stable, electronically unsaturated, chiral tantalaborane , 1998 .

[23]  F. Cotton,et al.  nido-Metalloborane Complexes: Synthesis and Structural Characterization of μ2,η4-Hexahydrodiboratotetrakis(N,N‘-diarylformamidinato)ditantalum(III), Aryl = p-Tolyl and Phenyl. The First Structurally Characterized Complexes Containing the μ2,η4-B2H62- Ligand , 1996 .

[24]  T. Fehlner,et al.  HIGH YIELD SYNTHESIS AND CHARACTERIZATION OF CHROMOBARONES. COMPARISON OF THE GEOMETRIC, ELECTRONIC, AND CHEMICAL PROPERTIES OF AN ELECTRONICALLY UNSA TURATED (ETA 5-C5ME5)2CR2B4H8 CLUSTER WITH ITS SATURATED DERIVATIVE (ETA 5- C5ME5)2CR2(CO)2B4H6 , 1995 .

[25]  Malcolm L. H. Green,et al.  Synthesis of η-cyclopentadienyl-polyborane derivatives of molybdenum and tungsten , 1995 .

[26]  T. Fehlner,et al.  Synthesis of Cobaltaborane Clusters from [Cp*CoCl]2 and Monoboranes. New Structures and Mechanistic Implications , 1994 .

[27]  L. Hsu,et al.  Clusters derived from the hydroboration of decacarbonyldi-.mu.-hydridotriosmium and their derivatives , 1992 .

[28]  R. Poli Monocyclopentadienyl Halide Complexes of the d- and f-Block Elements , 1991 .

[29]  T. Coffy,et al.  Addition of electrophiles to metalladiborane anions [M(CO)4(η2-B2H5)]− (Fe, Ru, Os) , 1990 .

[30]  W. Herrmann Essays über Metallorganische Chemie V. Stand und Aussichten der Rhenium-Chemie in der Katalyse , 1990 .

[31]  Malcolm L. H. Green,et al.  Niobium metallaboranes: A novel metallaborane analogue of pentaborane(11) , 1990 .

[32]  G. Long,et al.  Metalladiboranes of the iron subgroup: K[M(CO)4(.eta.2-B2H5)] (m- iron, ruthenium, osmium) and M'(.eta.5-C5H5) (CO)2(.eta.2-B2H5) (M' = iron, ruthenium). Analogs of metal-olefin complexes , 1989 .

[33]  C. Ting,et al.  Borohydride boron-hydrogen activation and dimerization by a doubly bonded, early-transition-metal organodimetallic complex. Ditantalladiborane syntheses as models for dehydrodimerization of methane to ethane , 1989 .

[34]  T. Fehlner,et al.  Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus , 1988 .

[35]  F. Cotton,et al.  Oxidative addition of diphenyl disulfide across a tantalum-tantalum double bond. Preparation and characterization of [TaCl3(Me2S)]2(.mu.-SPh)2 , 1986 .

[36]  L. Sneddon,et al.  Metal atom synthesis of metallaboron clusters. 7. Synthesis and structural characterization of an open-cage metallathiaborane cluster having a triple-decker structure: 4,6-(.eta.-C5H5)2Co2-3,5-S2B2H2 , 1985 .

[37]  L. Sneddon,et al.  Metal atom synthesis of metallaboron clusters. 6. Synthesis and structural characterization of a coupled diborane-metallacarborane cluster: 5:1',2'-[1-(.eta.-C5H5)Co-2,3-(Me3Si)2C2B4H3][B2H5] , 1985 .

[38]  J. Huffman,et al.  Insertion of boron into an osmium-carbonyl bond. Preparation and structure of the carbonyl borylidyne (.mu.-H)3(CO)9Os3BCO , 1983 .

[39]  R. Schrock,et al.  Reduction of carbon monoxide by binuclear tantalum hydride complexes , 1983 .

[40]  J. Huffman,et al.  Metal-metal bonded complexes of the early transition metals. 5. Direct hydrogenation of a metal-metal multiple bond , 1982 .

[41]  C. Day,et al.  Binuclear tantalum hydride complexes , 1982 .

[42]  R. Grimes Metallacarboranes and metal-boron clusters in organometallic synthesis , 1982 .

[43]  H. Wasserman,et al.  Crystal structure and molecular geometry of a dinuclear formyl complex of tantalum, [(.eta.5-C5Me4Et)TaCl2]2(.mu.-H)(.mu.-CHO). A unique "side-on" bridging mode for the formyl ligand , 1982 .

[44]  T. Fehlner,et al.  Metalloboranes: Their Relationships to Metal-Hydrocarbon Complexes and Clusters , 1982 .

[45]  R. Grimes Boron Clusters with Transition Metal-Hydrogen Bonds , 1982 .

[46]  R. Schrock,et al.  PREPARATION OF A “STABILIZED FORMYL” COMPLEX FROM CARBON MONOXIDE AND HYDROGEN AND THE CRYSTAL STRUCTURE OF A DERIVATIVE IN WHICH THE CARBON‐OXYGEN BOND HAS BEEN CLEAVED , 1980 .

[47]  R. Grimes Structure and stereochemistry in metalloboron cage compounds , 1978 .

[48]  S. Hildebrandt,et al.  Low-temperature crystal and molecular structure of tricarbonyl[octahydrotriborato(1-)]manganese, (CO)3MnB3H8 , 1978 .

[49]  B. P. Sullivan,et al.  Synthesis of closo- and nido-metalloboranes from metallocenes , 1978 .

[50]  M. Churchill,et al.  Crystal structure and molecular geometry of homogeneous hydrogenation catalyst .mu.-chloro-.mu.-hydrido-dichlorobis(pentamethylcyclopentadienyl)diiridium(III) and of its di-.mu.-chloro-dichlorobis- precursor. Direct comparison of .mu.-hydrido-.mu.-chloro-diiridium and di-.mu.-chloro-diiridium bridgi , 1977 .

[51]  K. Wade Structural and Bonding Patterns in Cluster Chemistry , 1976 .

[52]  N. N. Greenwood,et al.  Metalloboranes and metal–boron bonding , 1974 .

[53]  M. Churchill,et al.  Crystal structure and location of the bridging hydride ligand in .mu.-chloro-.mu.-hydrido-bis[chloro(pentamethylcyclopentadienyl)rhodium(III)], a monogeneous hydrogenation catalyst , 1973 .