Metallaboranes of the Early Transition Metals: Direct Synthesis and Characterization of [{(eta5-C5Me5)Ta}2BnHm] (n=4, m=10; n=5, m=11), [{(eta5-C5Me5)Ta}2B5H10(C6H4CH3)], and [{(eta5-C5Me5)TaCl}2B5H11].
暂无分享,去创建一个
[1] A. Vega,et al. Linked and Fused Tungstaborane Clusters: Synthesis, Characterization, and Electronic Structures ofbis-{(η5-C5Me5W)2B5H8}2and (η5-C5Me5W)2{Fe(CO)3}nB6-nH10-n,n= 0, 1† , 2007 .
[2] J. Kennedy. The Polyhedral Metallaboranes Part I. Metallaborane Clusters with Seven Vertices and Fewer , 2007 .
[3] J. Kennedy. The Polyhedral Metallaboranes Part II. Metallaborane Clusters with Eight Vertices and More , 2007 .
[4] G. Girolami,et al. Synthesis and characterization of the octahydrotriborate complexes Cp*V(B3H8)2 and Cp*Cr(B3H8)2 and the unusual cobaltaborane cluster Cp*2Co2(B6H14). , 2006, Journal of the American Chemical Society.
[5] T. Fehlner,et al. Synthesis and characterization of [exo-BH2(Cp*M)2B9H14] (M = Ru, Re), and the conversion of the ruthenaborane into [(Cp*Ru)2B10H16] with an open cluster framework based on a capped truncated tetrahedron. , 2005, Angewandte Chemie.
[6] T. Fehlner,et al. Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. , 2004, Journal of the American Chemical Society.
[7] T. Fehlner,et al. Transition-metal variation as a probe of the origins of hypoelectronic metallaboranes: eight- and ten-vertex open ruthenaboranes. , 2003, Angewandte Chemie.
[8] T. Fehlner,et al. Comparison of the geometric and molecular orbital structures of (Cp*Cr)2B4H8 and (Cp*Re)2B4H8, Cp*=η5-C5Me5. Structural consequences of delocalized electronic unsaturation in a metallaborane cluster , 2000 .
[9] L. Sneddon,et al. Transition-Metal-Promoted Reactions of Boron Hydrides. 16. Platinum- and Palladium-Catalyzed Olefin Addition and Olefin Dehydrogenative Borylation Reactions of arachno-6,8-C2B7H13: Syntheses and Structural Characterizations of 7-R-arachno-6,8-C2B7H12 and 7-(trans-R-CHCH)-arachno-6,8-C2B7H12 , 2000 .
[10] Lei,et al. Fine-tuning of metallaborane geometries: chemistry of iridaboranes derived from the reaction of , 2000, Chemistry.
[11] T. Fehlner,et al. Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5) , 1999 .
[12] T. Fehlner,et al. MOLECULAR ORBITAL ANALYSIS OF THE TREND IN 11B NMR CHEMICAL SHIFTS FOR (CP*M)2B5H9 (M = CR, MO, W; CP* = ETA 5-C5ME5) , 1999 .
[13] J. Kennedy,et al. Isolation and Structure of [(PPh3)3(PPh2)2Pd4B20H16]. A Possible Prognostic for New Globular Borane-Based Cluster Architectures , 1999 .
[14] T. Fehlner,et al. Synthesis of Mono- and Ditungstaboranes from Reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5Me5). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center , 1999 .
[15] F. Cotton,et al. Low-Valent Ditantalum Complex Ta2(μ-BH3)(μ-dmpm)3(η2-BH4)2: First Dinuclear Compound Containing a Bridging BH3 Group with Direct Ta−B Bonds , 1998 .
[16] T. Fehlner,et al. Synthesis and Characterization of Cp(3)Ru(3)B(3)H(8), Cp = eta(5)-C(5)Me(5), Exhibiting a Capped Nido Geometry. Cluster Geometry Driven by Hydrogen Bridging. , 1998, Inorganic chemistry.
[17] T. Fehlner,et al. Synthesis of Novel Molybdaboranes from (η5-C5R5)MoCln Precursors (R = H, Me; n = 1, 2, 4) , 1998 .
[18] T. Fehlner,et al. SEARCH FOR A GENERAL ROUTE TO METALLABORANES VIA THE REACTION OF MONOCYCLOPENTADIENYL METAL CHLORIDES WITH MONOBORANE. SYNTHESIS AND REACTIVITY OF THE RHODABORANE NIDO-1-CL-2,3-(ETA 5-C5ME5)RH2B3H6 , 1998 .
[19] T. Fehlner,et al. Cluster Expansion Reactions of Group 6 Metallaboranes. Syntheses, Crystal Structures, and Spectroscopic Characterizations of (Cp*Cr)2B5H9, (Cp*Cr)2B4H8Fe(CO)3, (Cp*Cr)2B4H7Co(CO)3, and (Cp*Mo)2B5H9Fe(CO)3 , 1998 .
[20] J. Kennedy,et al. B-frame supported bimetallics. [(PMe2ph)2PtB9H11Ru(η6-isoPrC6H4Me)] and [(PMe2ph)2PtB9H9Ru(η6-isoPrC6H4Me)]; an interesting pair of electron-deficient nido and closo geometries , 1998 .
[21] T. Fehlner,et al. Synthesis and characterization of the nine-atom, rhena- and tungsta-boranes (Cp*Re)2B7H7 and (Cp*W)2B7H9, Cp* = η5-C5Me5. Molecular mimics of hypoelectronic main-group clusters in Zintl phases , 1998 .
[22] T. Fehlner,et al. Cp*TaCl2B4H8: synthesis, crystal structure and spectroscopic characterization of an air-stable, electronically unsaturated, chiral tantalaborane , 1998 .
[23] F. Cotton,et al. nido-Metalloborane Complexes: Synthesis and Structural Characterization of μ2,η4-Hexahydrodiboratotetrakis(N,N‘-diarylformamidinato)ditantalum(III), Aryl = p-Tolyl and Phenyl. The First Structurally Characterized Complexes Containing the μ2,η4-B2H62- Ligand , 1996 .
[24] T. Fehlner,et al. HIGH YIELD SYNTHESIS AND CHARACTERIZATION OF CHROMOBARONES. COMPARISON OF THE GEOMETRIC, ELECTRONIC, AND CHEMICAL PROPERTIES OF AN ELECTRONICALLY UNSA TURATED (ETA 5-C5ME5)2CR2B4H8 CLUSTER WITH ITS SATURATED DERIVATIVE (ETA 5- C5ME5)2CR2(CO)2B4H6 , 1995 .
[25] Malcolm L. H. Green,et al. Synthesis of η-cyclopentadienyl-polyborane derivatives of molybdenum and tungsten , 1995 .
[26] T. Fehlner,et al. Synthesis of Cobaltaborane Clusters from [Cp*CoCl]2 and Monoboranes. New Structures and Mechanistic Implications , 1994 .
[27] L. Hsu,et al. Clusters derived from the hydroboration of decacarbonyldi-.mu.-hydridotriosmium and their derivatives , 1992 .
[28] R. Poli. Monocyclopentadienyl Halide Complexes of the d- and f-Block Elements , 1991 .
[29] T. Coffy,et al. Addition of electrophiles to metalladiborane anions [M(CO)4(η2-B2H5)]− (Fe, Ru, Os) , 1990 .
[30] W. Herrmann. Essays über Metallorganische Chemie V. Stand und Aussichten der Rhenium-Chemie in der Katalyse , 1990 .
[31] Malcolm L. H. Green,et al. Niobium metallaboranes: A novel metallaborane analogue of pentaborane(11) , 1990 .
[32] G. Long,et al. Metalladiboranes of the iron subgroup: K[M(CO)4(.eta.2-B2H5)] (m- iron, ruthenium, osmium) and M'(.eta.5-C5H5) (CO)2(.eta.2-B2H5) (M' = iron, ruthenium). Analogs of metal-olefin complexes , 1989 .
[33] C. Ting,et al. Borohydride boron-hydrogen activation and dimerization by a doubly bonded, early-transition-metal organodimetallic complex. Ditantalladiborane syntheses as models for dehydrodimerization of methane to ethane , 1989 .
[34] T. Fehlner,et al. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus , 1988 .
[35] F. Cotton,et al. Oxidative addition of diphenyl disulfide across a tantalum-tantalum double bond. Preparation and characterization of [TaCl3(Me2S)]2(.mu.-SPh)2 , 1986 .
[36] L. Sneddon,et al. Metal atom synthesis of metallaboron clusters. 7. Synthesis and structural characterization of an open-cage metallathiaborane cluster having a triple-decker structure: 4,6-(.eta.-C5H5)2Co2-3,5-S2B2H2 , 1985 .
[37] L. Sneddon,et al. Metal atom synthesis of metallaboron clusters. 6. Synthesis and structural characterization of a coupled diborane-metallacarborane cluster: 5:1',2'-[1-(.eta.-C5H5)Co-2,3-(Me3Si)2C2B4H3][B2H5] , 1985 .
[38] J. Huffman,et al. Insertion of boron into an osmium-carbonyl bond. Preparation and structure of the carbonyl borylidyne (.mu.-H)3(CO)9Os3BCO , 1983 .
[39] R. Schrock,et al. Reduction of carbon monoxide by binuclear tantalum hydride complexes , 1983 .
[40] J. Huffman,et al. Metal-metal bonded complexes of the early transition metals. 5. Direct hydrogenation of a metal-metal multiple bond , 1982 .
[41] C. Day,et al. Binuclear tantalum hydride complexes , 1982 .
[42] R. Grimes. Metallacarboranes and metal-boron clusters in organometallic synthesis , 1982 .
[43] H. Wasserman,et al. Crystal structure and molecular geometry of a dinuclear formyl complex of tantalum, [(.eta.5-C5Me4Et)TaCl2]2(.mu.-H)(.mu.-CHO). A unique "side-on" bridging mode for the formyl ligand , 1982 .
[44] T. Fehlner,et al. Metalloboranes: Their Relationships to Metal-Hydrocarbon Complexes and Clusters , 1982 .
[45] R. Grimes. Boron Clusters with Transition Metal-Hydrogen Bonds , 1982 .
[46] R. Schrock,et al. PREPARATION OF A “STABILIZED FORMYL” COMPLEX FROM CARBON MONOXIDE AND HYDROGEN AND THE CRYSTAL STRUCTURE OF A DERIVATIVE IN WHICH THE CARBON‐OXYGEN BOND HAS BEEN CLEAVED , 1980 .
[47] R. Grimes. Structure and stereochemistry in metalloboron cage compounds , 1978 .
[48] S. Hildebrandt,et al. Low-temperature crystal and molecular structure of tricarbonyl[octahydrotriborato(1-)]manganese, (CO)3MnB3H8 , 1978 .
[49] B. P. Sullivan,et al. Synthesis of closo- and nido-metalloboranes from metallocenes , 1978 .
[50] M. Churchill,et al. Crystal structure and molecular geometry of homogeneous hydrogenation catalyst .mu.-chloro-.mu.-hydrido-dichlorobis(pentamethylcyclopentadienyl)diiridium(III) and of its di-.mu.-chloro-dichlorobis- precursor. Direct comparison of .mu.-hydrido-.mu.-chloro-diiridium and di-.mu.-chloro-diiridium bridgi , 1977 .
[51] K. Wade. Structural and Bonding Patterns in Cluster Chemistry , 1976 .
[52] N. N. Greenwood,et al. Metalloboranes and metal–boron bonding , 1974 .
[53] M. Churchill,et al. Crystal structure and location of the bridging hydride ligand in .mu.-chloro-.mu.-hydrido-bis[chloro(pentamethylcyclopentadienyl)rhodium(III)], a monogeneous hydrogenation catalyst , 1973 .