Solid-state chemistry on a surface and in a beaker: Unconventional routes to transition metal chalcogenide nanomaterials

Abstract This article focuses on two different approaches to create nanoscale transition metal chalcogenide materials. First, we used chemical nanofabrication, a combination of top-down patterning and bottom-up solid-state synthesis, to achieve control over the shape, size, and ordering of the patterned nanomaterials. We demonstrated orientational control over nanocrystals within sub-300 nm patterns of MoS2 and formed free-standing nanostructures of crystalline NiS2. In addition, crossed line arrays of mixed metal chalcogenide nanostructures were achieved, and TaS2 nanopatterns were made by the chemical transformation of tantalum oxide templates. Second, we developed a one-pot procedure using molecular precursors to synthesize two-dimensional NbSe2, TaS2 and TaSe2 nanoplates and one-dimensional NbSe2 wires depending on the relative amount of surfactants in the reaction mixture. Prospects for these transition metal chalcogenide nanomaterials with controlled shapes and morphologies will be discussed.

[1]  C. Lokhande,et al.  Chemical deposition method for metal chalcogenide thin films , 2000 .

[2]  George M Whitesides,et al.  Generation of 30-50 nm structures using easily fabricated, composite PDMS masks. , 2002, Journal of the American Chemical Society.

[3]  Sidney R. Cohen,et al.  Hollow nanoparticles of WS2 as potential solid-state lubricants , 1997, Nature.

[4]  I. L. Singer,et al.  Wear behavior of triode-sputtered MoS2 coatings in dry sliding contact with steel and ceramics , 1996 .

[5]  Y. Qian,et al.  A direct solvothermal route to nanocrystalline selenides at low temperature , 2000 .

[6]  N. Alonso‐Vante,et al.  Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction , 1994 .

[7]  Zhaodong Nan,et al.  Formation of various morphologies of copper sulfides by a solvothermal method , 2006 .

[8]  R. Tenne,et al.  Modification of contact surfaces by fullerene-like solid lubricant nanoparticles , 2003 .

[9]  R. Frindt SUPERCONDUCTIVITY IN ULTRATHIN NbSe$sub 2$ LAYERS. , 1972 .

[10]  Jess P. Wilcoxon,et al.  Catalytic Photooxidation of Pentachlorophenol Using Semiconductor Nanoclusters , 2000 .

[11]  R. Laiho,et al.  Quasiclassical approach to nonlocal generalized London equation in mixed state of s -wave superconductors , 2007 .

[12]  M. Nath,et al.  Nanotubes of the disulfides of groups 4 and 5 metals , 2002 .

[13]  Hongkun Park,et al.  Magnetic switching of phase-slip dissipation in NbSe 2 nanoribbons , 2006, cond-mat/0608586.

[14]  M. Nath,et al.  New metal disulfide nanotubes. , 2001, Journal of the American Chemical Society.

[15]  T. Odom,et al.  Synthesis of nanoscale NbSe2 materials from molecular precursors. , 2005, Journal of the American Chemical Society.

[16]  R. Tenne,et al.  Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF) , 2002 .

[17]  Sidney R. Cohen,et al.  WS2 nanotubes as tips in scanning probe microscopy , 1999 .

[18]  W. Kwok,et al.  Nanowires and nanoribbons of charge-density-wave conductor NbSe3. , 2005, Nano letters.

[19]  H. K. Edwards,et al.  Single-step synthesis and surface-assisted growth of superconducting TaS2 nanowires. , 2006, Angewandte Chemie.

[20]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[21]  T. Toshima,et al.  Supercluster of Electrons in Ultrathin TaSe2 Nanocrystals , 2006 .

[22]  H. Zeng,et al.  Single-crystal snowflake of Cu7S4: Low temperature, large scale synthesis and growth mechanism , 2008 .

[23]  Inorganic nanotubes and fullerene-like nanoparticles , 2006 .

[24]  N. Barreau,et al.  MoS2 textured films grown on glass substrates through sodium sulfide based compounds , 2002 .

[25]  S. Zaitsev-Zotov,et al.  Evidence of collective charge transport in the ohmic regime of o-TaS(3) in the charge-density-wave state by a photoconduction study. , 2006, Physical review letters.

[26]  Teri W. Odom,et al.  Chemical nanofabrication: a general route to surface-patterned and free-standing transition metal chalcogenide nanostructures , 2007 .

[27]  John L. Hutchison,et al.  Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism , 1996 .

[28]  Jun‐Jie Zhu,et al.  Tantalum disulfide nanobelts: preparation, superconductivity and field emission , 2006 .

[29]  T. Odom,et al.  Patterned MoS2 Nanostructures Over Centimeter‐Square Areas , 2005 .

[30]  Y. Qian,et al.  Preparation of ternary I-IV-VI nanocrystallines via a mild solution route , 2001 .

[31]  A. Jäger-Waldau,et al.  Composition and morphology of MoSe2 thin films , 1990 .

[32]  J. Bernède,et al.  A study of textured non-stoichiometric MoTe2 thin films used as substrates for textured stoichiometric MoS2 thin films , 2004 .

[33]  T. Odom,et al.  Large-area nanoscale patterning: chemistry meets fabrication. , 2006, Accounts of chemical research.

[34]  H S J van der Zant,et al.  One-dimensional conduction in charge-density-wave nanowires. , 2004, Physical review letters.

[35]  Poulomi Roy,et al.  Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur , 2006 .

[36]  T. Toshima,et al.  Synthesizing nanocrystals of metal di-chalcogenide charge density wave system , 2005 .

[37]  C. Rao CHEMICAL ROUTES TO NANOCRYSTALS, NANOWIRES AND NANOTUBES , 2005 .

[38]  Vipin Kumar,et al.  CdSe photovoltaic sintered films , 1999 .

[39]  J. Switzer,et al.  Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. , 2005, The journal of physical chemistry. B.

[40]  S. Seok,et al.  ZnSe colloidal nanoparticles synthesized by solvothermal method in the presence of ZrCl4. , 2008, Journal of colloid and interface science.

[41]  Jian Yang,et al.  Shape Control and Characterization of Transition Metal Diselenides MSe2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process , 2001 .

[42]  Q. Li,et al.  Polycrystalline Molybdenum Disulfide (2H−MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis , 2004 .

[43]  D. Mihailovic,et al.  Electrochemical preparation and characterisation of LizMoS2−x nanotubes , 2003 .

[44]  Jens K. Nørskov,et al.  The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study , 2007 .

[45]  M. Nath,et al.  Superconducting NbSe2 nanostructures , 2003 .

[46]  W. Kwok,et al.  Superconducting NbSe 2 nanowires and nanoribbons converted from NbSe 3 nanostructures , 2005 .

[47]  A. Albu-Yaron,et al.  Inorganic fullerene-like nanoparticles of TiS2 , 2005 .

[48]  K. Uchida,et al.  Micro-crystalline molybdenum sulfide prepared by mechanical milling as an unsupported model catalyst for the hydrodesulfurization of diesel fuel , 2004 .

[49]  T. Hasegawa,et al.  Template synthesis of M/M2S (M=Ag, Cu) hetero-nanowires by electrochemical technique , 2006 .

[50]  C. Lévy‐Clément,et al.  The chemical synthesis in solution and characterization of transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se) nanoparticles , 2004 .

[51]  Kai Jiang,et al.  Synthesis of high-quality Ni2P hollow sphere via a template-free surfactant-assisted solvothermal route , 2008 .