Output-Based Error Estimation and Mesh Adaptation Using Convolutional Neural Networks: Application to a Scalar Advection-Diffusion Problem

In this paper, we introduce a new method to perform output error estimation and mesh adaptation in computational fluid dynamics (CFD) using machine-learning techniques. The error of interest is the functional output error induced by the numerical discretization, including the finite computational mesh and approximation order. Given the data of adaptive flow simulations guided by an adjoint-based error estimation method, a surrogate model is trained to predict the output error with only the low-fidelity solution as input. The goal is to generalize the error modeling knowledge from the simulation data at hand. The proposed method uses an encoder-decoder type convolutional neural network (CNN), supervised by both the adaptive error indicator field and the total output error to capture both the local and global features related to the numerical error. The feasibility of the proposed machine-learning approach for error prediction and mesh adaptation is demonstrated in a two-dimensional advection-diffusion problem. Both the output error and the localized adaptive indicators are well predicted by the trained CNN model, which is then used to drive the mesh adaptation as an alternative to the adjoint-based method. The good performance and relatively simple deployment encourage more study and development of the proposed method.

[1]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[2]  Karthik Duraisamy,et al.  A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..

[3]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[6]  Karthik Duraisamy,et al.  Prediction of aerodynamic flow fields using convolutional neural networks , 2019, Computational Mechanics.

[7]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[8]  Brian A. Freno,et al.  Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[9]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[10]  James Newman,et al.  Comparison of adjoint‐based and feature‐based grid adaptation for functional outputs , 2006 .

[11]  Steven M. Klausmeyer,et al.  Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[12]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[13]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[14]  Robert Youngblood,et al.  A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation , 2018, Nuclear Engineering and Design.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  Dan Givoli,et al.  Neural network time series forecasting of finite-element mesh adaptation , 2005, Neurocomputing.

[17]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[18]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[19]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[20]  Robert Youngblood,et al.  Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD) , 2020 .

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[23]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[24]  Peter Korn,et al.  Predicting goal error evolution from near-initial-information: A learning algorithm , 2011, J. Comput. Phys..

[25]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[26]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[27]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[28]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[29]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[30]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[31]  Serge Guillas,et al.  Bayesian calibration of the constants of the k–ε turbulence model for a CFD model of street canyon flow , 2014 .

[32]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[33]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[34]  Li Wang,et al.  Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..

[35]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[36]  Adrian Sandu,et al.  Multivariate predictions of local reduced‐order‐model errors and dimensions , 2017, ArXiv.

[37]  Wei Li,et al.  Convolutional Neural Networks for Steady Flow Approximation , 2016, KDD.

[38]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[39]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[40]  Kevin Carlberg,et al.  The ROMES method for statistical modeling of reduced-order-model error , 2014, SIAM/ASA J. Uncertain. Quantification.

[41]  Karthik Ramani,et al.  ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains , 2019, J. Comput. Phys..

[42]  David L. Darmofal,et al.  An optimization-based framework for anisotropic simplex mesh adaptation , 2012, J. Comput. Phys..

[43]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.