Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well

We consider a nonrelativistic charged particle in a one-dimensional infinite square potential well. This quantum system is subjected to a control, which is a uniform (in space) time-depending electric field. It is represented by a complex probability amplitude solution of a Schrodinger equation on a one-dimensional bounded domain, with Dirichlet boundary conditions. We prove the almost global practical stabilization of the eigenstates by explicit feedback laws.

[1]  Gabriel Turinici,et al.  Controllable quantities for bilinear quantum systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  Michihiko Sugawara,et al.  General formulation of locally designed coherent control theory for quantum system , 2003 .

[3]  Mazyar Mirrahimi,et al.  Implicit Lyapunov control of finite dimensional Schrödinger equations , 2007, Syst. Control. Lett..

[4]  Constructive solution of a bilinear control problem , 2006 .

[5]  Herschel Rabitz,et al.  Wavefunction controllability for finite-dimensional bilinear quantum systems , 2003 .

[6]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[7]  H. Rabitz,et al.  Wavefunction controllability in quantum systems , 2003 .

[8]  J. E. Avron,et al.  Adiabatic Theorem without a Gap Condition , 1999 .

[9]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[10]  Herschel Rabitz,et al.  Optimal Dynamic Discrimination of Similar Molecules through Quantum Learning Control , 2002 .

[11]  Mazyar Mirrahimi,et al.  Reference trajectory tracking for locally designed coherent quantum controls. , 2005, The journal of physical chemistry. A.

[12]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[13]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[14]  Tosio Kato Perturbation theory for linear operators , 1966 .

[15]  Herschel Rabitz,et al.  Competitive tracking of molecular objectives described by quantum mechanics , 1995 .

[16]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[18]  J. Coron Control and Nonlinearity , 2007 .

[19]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[20]  Pierre Rouchon Control of a quantum particle in a moving box , 2002 .

[21]  Lucie Baudouin,et al.  Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control , 2005 .

[22]  M. Thoma,et al.  On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes , 1992 .

[23]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[24]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[25]  H. Rabitz,et al.  Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .

[26]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .