Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond

Coherent optical phonons in bulk solid systems play a crucial role in understanding and designing light-matter interactions and can be detected by the transient-reflectivity measurement. In this paper, we demonstrate spectrally resolved detection of coherent optical phonons in diamond from ultrashort infrared pump-probe measurements using optical bandpass filters. We show that this enhances the sensitivity approximately 35 times in measuring the coherent oscillations in the transient reflectivity compared with the commonly used spectrally integrated measurement. To explain this observation, we discuss its mechanism.

[1]  Yutaka Shikano,et al.  Influence of pulse width and detuning on coherent phonon generation , 2015, 1510.01798.

[2]  F. Benatti,et al.  Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics , 2015, Nature Communications.

[3]  K. Fisher,et al.  Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory. , 2014, Physical review letters.

[4]  Y. Kayanuma,et al.  Measuring quantum coherence in bulk solids using dual phase-locked optical pulses , 2014, Scientific Reports.

[5]  J. Nunn,et al.  From photons to phonons and back: a THz optical memory in diamond. , 2013, Physical review letters.

[6]  H. Fukidome,et al.  Coherent nanoscale optical-phonon wave packet in graphene layers , 2013 .

[7]  H. Takahashi,et al.  All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of bismuth , 2013, Nature Communications.

[8]  Richard P. Mildren,et al.  Optical Engineering of Diamond , 2013 .

[9]  Kazutaka G. Nakamura,et al.  Coherent optical phonons in a Bi2Se3 single crystal measured via transient anisotropic reflectivity , 2013 .

[10]  K. Mizoguchi,et al.  Generation of coherent phonons in a CdTe single crystal using an ultrafast two-phonon laser-excitation process. , 2013, Physical review letters.

[11]  G. D. Sanders,et al.  Coherent phonons in carbon nanotubes and graphene , 2011, 1205.6023.

[12]  I. Walmsley,et al.  Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond , 2011, Nature Photonics.

[13]  D. Jaksch,et al.  Entangling Macroscopic Diamonds at Room Temperature , 2011, Science.

[14]  T. Kuhn,et al.  Generation and dynamics of phononic cat states after optical excitation of a quantum dot , 2011 .

[15]  H. Hosono,et al.  Coherent Optical Phonons in the Iron Oxypnictide SmFeAsO1-xFx (x=0.075) , 2011 .

[16]  Sunil Kumar,et al.  Temperature-dependent chirped coherent phonon dynamics in Bi2Te3 using high-intensity femtosecond laser pulses , 2010, 1011.1666.

[17]  I. Walmsley,et al.  Comparing phonon dephasing lifetimes in diamond using Transient Coherent Ultrafast Phonon Spectroscopy , 2010 .

[18]  K. Shiraki,et al.  Ultrafast vibrational motion of carbon nanotubes in different pH environments , 2009, 1011.3584.

[19]  K. Ohmori Wave-packet and coherent control dynamics. , 2009, Annual review of physical chemistry.

[20]  G. D. Sanders,et al.  Resonant coherent phonon spectroscopy of single-walled carbon nanotubes , 2008, 0812.1953.

[21]  G. D. Sanders,et al.  Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses. , 2008, Physical review letters.

[22]  H. Petek,et al.  Coherent phonon anisotropy in aligned single-walled carbon nanotubes. , 2008, Nano letters.

[23]  L. Wirtz,et al.  Ultrafast Electron-Phonon Decoupling in Graphite , 2007, 0712.1879.

[24]  X. Xu,et al.  Ultrafast Dynamics of photo-excited coherent phonons in Bi2Te3 thin-films , 2007 .

[25]  H. Petek,et al.  Coherent optical phonons in diamond , 2006 .

[26]  G. Lanzani,et al.  Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes , 2006 .

[27]  M. Kitajima,et al.  Spectrally filtered time domain study of coherent phonons in semimetals , 2004 .

[28]  Hrvoje Petek,et al.  The birth of a quasiparticle in silicon observed in time–frequency space , 2003, Nature.

[29]  Roberto Merlin,et al.  Dynamics and coherent control of high-amplitude optical phonons in bismuth , 2001 .

[30]  K. Sakai,et al.  Dynamics of low-frequency phonons in the YBa 2 Cu 3 O 7-x superconductor studied by time- and frequency-domain spectroscopies , 2000 .

[31]  Roberto Merlin,et al.  Generating coherent THz phonons with light pulses , 1997 .

[32]  Albrecht,et al.  Coherent THz Phonons Driven by Light Pulses and the Sb Problem: What is the Mechanism? , 1996, Physical review letters.

[33]  Kurz,et al.  Subpicosecond carrier transport in GaAs surface-space-charge fields. , 1993, Physical review. B, Condensed matter.

[34]  Albrecht,et al.  Time-resolved observation of coherent phonons in superconducting YBa2Cu3O7- delta thin films. , 1992, Physical review letters.

[35]  Stock,et al.  Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump-probe spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  Cheng,et al.  Theory for displacive excitation of coherent phonons. , 1992, Physical review. B, Condensed matter.

[37]  E. Ippen,et al.  Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3 , 1991 .

[38]  G. Fleming,et al.  COMMUNICATIONS Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response , 1991 .

[39]  J. Whitaker,et al.  SUBPICOSECOND TIME-RESOLVED STUDIES OF COHERENT PHONON OSCILLATIONS IN THIN-FILM YBA2CU3O6+X (X< 0.4) , 1991 .

[40]  Cho,et al.  Subpicosecond time-resolved coherent-phonon oscillations in GaAs. , 1990, Physical review letters.

[41]  Keith A. Nelson,et al.  Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications , 1985 .