Experimental violation of multipartite Bell inequalities with trapped ions.

We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First, we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Bell-type inequality for graph states, where the criterion for violation is a sufficiently high fidelity. Second, we analyze Greenberger-Horne-Zeilinger states of up to 14 ions generated in a previous experiment using stronger Mermin-Klyshko inequalities, and show that in this case the violation of local realism increases exponentially with system size. These experiments represent a violation of multipartite Bell-type inequalities of deterministically prepared entangled states. In addition, the detection loophole is closed.

[1]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[2]  O. Gühne,et al.  Bell inequality tests of four-photon six-qubit graph states , 2010 .

[3]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[4]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[5]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[6]  D. Matsukevich,et al.  Bell inequality violation with two remote atomic qubits. , 2008, Physical review letters.

[7]  O. Guhne,et al.  Mermin inequalities for perfect correlations , 2007, 0708.3208.

[8]  A. Zeilinger,et al.  Experimental violation of a cluster state bell inequality. , 2005, Physical review letters.

[9]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[10]  G. Tóth,et al.  Bell inequalities for graph states. , 2004, Physical review letters.

[11]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[12]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[13]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[14]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[15]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[16]  V. Scarani,et al.  Spectral decomposition of Bell's operators for qubits , 2001, quant-ph/0103068.

[17]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[18]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[19]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[20]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[21]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[22]  A. Peres,et al.  Quantum code words contradict local realism , 1996, quant-ph/9611011.

[23]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[24]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[27]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[28]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .