MagTics: Flexible and Thin Form Factor Magnetic Actuators for Dynamic and Wearable Haptic Feedback

We present MagTics, a novel flexible and wearable haptic interface based on magnetically actuated bidirectional tactile pixels (taxels). MagTics' thin form factor and flexibility allows for rich haptic feedback in mobile settings. We propose a novel actuation mechanism based on bistable electromagnetic latching that combines high frame rate and holding force with low energy consumption and a soft and flexible form factor. We overcome limitations of traditional soft actuators by placing several hard actuation cells, driven by flexible printed electronics, in a soft 3D printed case. A novel EM-shielding prevents magnet-magnet interactions and allows for high actuator densities. A prototypical implementation comprising of 4 actuated pins on a 1.7 cm pitch, with 2 mm travel, and generating 160 mN to 200 mN of latching force is used to implement a number of compelling application scenarios including adding haptic and tactile display capabilities to wearable devices, to existing input devices and to provide localized haptic feedback in virtual reality. Finally, we report results of a psychophysical study, conducted to inform future developments and to identify possible application domains.

[1]  Hiroshi Ishii,et al.  Haptic Edge Display for Mobile Tactile Interaction , 2016, CHI.

[2]  Jérôme Pasquero,et al.  A haptic wristwatch for eyes-free interactions , 2011, CHI.

[3]  Woohun Lee,et al.  HapThimble: A Wearable Haptic Device towards Usable Virtual Touch Screen , 2016, CHI.

[4]  Yuriko Nakai,et al.  Tactile Presentation to the Back of a Smartphone with Simultaneous Screen Operation , 2016, CHI Extended Abstracts.

[5]  Xiaoying Sun,et al.  EV-pen: an electrovibration haptic feedback pen for touchscreens , 2016, SIGGRAPH ASIA Emerging Technologies.

[6]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[7]  I. Hirsh,et al.  Perceived order in different sense modalities. , 1961, Journal of experimental psychology.

[8]  Karon E. MacLean,et al.  HapTurk: Crowdsourcing Affective Ratings of Vibrotactile Icons , 2016, CHI.

[9]  R. E. Stamper,et al.  A Three Degree of Freedom Parallel Manipulator with Only Translational Degrees of Freedom , 1997 .

[10]  Massimo De Vittorio,et al.  Optimization of the force and power consumption of a microfabricated magnetic actuator , 2015 .

[11]  Yifei Zhang,et al.  Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR , 2016, CHI.

[12]  Hyoukryeol Choi,et al.  Development of Soft-Actuator-Based Wearable Tactile Display , 2008, IEEE Transactions on Robotics.

[13]  Hunter G. Hoffman,et al.  Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments , 1998, Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180).

[14]  Daniel J. Wigdor,et al.  Snake Charmer: Physically Enabling Virtual Objects , 2016, TEI.

[15]  S Weinstein,et al.  Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality , 1968 .

[16]  B. Hannaford,et al.  Perceptual thresholds for single vs. Multi-Finger Haptic interaction , 2010, 2010 IEEE Haptics Symposium.

[17]  Blake Hannaford,et al.  Human Interaction with Small Haptic Effects , 2005, Presence: Teleoperators & Virtual Environments.

[18]  Li-Wei Chan,et al.  EdgeVib: Effective Alphanumeric Character Output Using a Wrist-Worn Tactile Display , 2016, UIST.

[19]  Enrico Rukzio,et al.  Unconstrained Pedestrian Navigation based on Vibro-tactile Feedback around the Wristband of a Smartwatch , 2016, CHI Extended Abstracts.

[20]  Vincent Hayward,et al.  Haptic interfaces and devices , 2004 .

[21]  Gerhard Weber,et al.  A tactile windowing system for blind users , 2010, ASSETS '10.

[22]  Vincent Hayward,et al.  Biomechanically Optimized Distributed Tactile Transducer Based on Lateral Skin Deformation , 2010, Int. J. Robotics Res..

[23]  Abderrahmane Kheddar,et al.  VITAL: An electromagnetic integrated tactile display , 2007, Displays.

[24]  Darren Leigh,et al.  Haptic pen: a tactile feedback stylus for touch screens , 2004, UIST '04.

[25]  Grigore C. Burdea,et al.  The Rutgers Master II-ND force feedback glove , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[26]  James A. Landay,et al.  ActiVibe: Design and Evaluation of Vibrations for Progress Monitoring , 2016, CHI.

[27]  Ali Israr,et al.  TeslaTouch: electrovibration for touch surfaces , 2010, UIST.

[28]  Lorna M. Brown,et al.  Multidimensional tactons for non-visual information presentation in mobile devices , 2006, Mobile HCI.

[29]  Jun Rekimoto,et al.  Lumen: interactive visual and shape display for calm computing , 2004, SIGGRAPH '04.

[30]  Geehyuk Lee,et al.  Investigating the Information Transfer Efficiency of a 3x3 Watch-back Tactile Display , 2015, CHI.

[31]  James P. Bliss,et al.  Vibrotactile Stimuli Parameters on Detection Reaction Times , 2014 .

[32]  Eniko T. Enikov,et al.  Electromagnetic Microactuator-Array Based Virtual Tactile Display , 2016, ICCHP.

[33]  Karon E. MacLean,et al.  Detecting vibrations across the body in mobile contexts , 2011, CHI.

[34]  Morten Fjeld,et al.  HaptiColor: Interpolating Color Information as Haptic Feedback to Assist the Colorblind , 2016, CHI.

[35]  Sean Follmer,et al.  Wolverine: A Wearable Haptic Interface for Grasping in VR , 2016, UIST.

[36]  Jun-Young Lee,et al.  Ubi-Pen: A Haptic Interface with Texture and Vibrotactile Display , 2009, IEEE Computer Graphics and Applications.

[37]  Sean Follmer,et al.  Applications of Switchable Permanent Magnetic Actuators in Shape Change and Tactile Display , 2016, UIST.

[38]  Thomas H. Massie,et al.  The PHANToM Haptic Interface: A Device for Probing Virtual Objects , 1994 .

[39]  Yongfeng Huang,et al.  Designing an effective vibration-based notification interface for mobile phones , 2013, CSCW.

[40]  Claudio Pacchierotti,et al.  Towards Wearability in Fingertip Haptics: A 3-DoF Wearable Device for Cutaneous Force Feedback , 2013, IEEE Transactions on Haptics.

[41]  Herbert Shea,et al.  Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays , 2017, IEEE Transactions on Haptics.

[42]  Morten Fjeld,et al.  OmniVib: Towards Cross-body Spatiotemporal Vibrotactile Notifications for Mobile Phones , 2015, CHI.

[43]  Vincent Hayward,et al.  A role for haptics in mobile interaction: initial design using a handheld tactile display prototype , 2006, CHI.

[44]  Lorna M. Brown,et al.  Tactons: Structured Tactile Messages for Non-Visual Information Display , 2004, AUIC.

[45]  Alan C. Brady,et al.  Results from a Tactile Array on the Fingertip , 2003 .

[46]  Hiroo Iwata,et al.  Project FEELEX: adding haptic surface to graphics , 2001, SIGGRAPH.

[47]  Zhibin Yu,et al.  Bistable Large‐Strain Actuation of Interpenetrating Polymer Networks , 2012, Advanced materials.

[48]  Ivan Poupyrev,et al.  Project Jacquard: Interactive Digital Textiles at Scale , 2016, CHI.

[49]  Ivan Poupyrev,et al.  Tactile interfaces for small touch screens , 2003, UIST '03.

[50]  Hiroyuki Shinoda,et al.  Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound , 2010, IEEE Transactions on Haptics.

[51]  J J Koenderink,et al.  Active haptic detection and discrimination of shape , 2002, Perception & psychophysics.

[52]  Xiangshi Ren,et al.  Suitable Body Parts for Vibration Feedback in Walking Navigation Systems , 2015, CCHI.

[53]  Jun Rekimoto,et al.  Ambient touch: designing tactile interfaces for handheld devices , 2002, UIST '02.

[54]  Thad Starner,et al.  BuzzWear: alert perception in wearable tactile displays on the wrist , 2010, CHI.

[55]  Koji Tsukada,et al.  ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation , 2004, UbiComp.

[56]  Eyal Ofek,et al.  NormalTouch and TextureTouch: High-fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers , 2016, UIST.