First application of the meteorological Mini-UAV 'M2AV'

The limitations of manned airborne meteorological measurements led to a new unmanned system, the Meteorological Mini-UAV (M 2 AV), recently developed by the Institute of Aerospace Systems, Technical University of Braunschweig. The task was to develop, test and verify a meteorological sensor package as payload for an already available carrier aircraft, the UAV ‘Carolo T200’. Thereby the limitations in size and mass had to be respected. The M 2 AV is capable of performing turbulence and wind vector measurements within the atmospheric boundary layer and permits very short measurement cycles as an economic supplement during meteorological campaigns. The article gives details on the technical items. Results from meteorological data sets measured by the M 2 AV are used for data quality assessment. In October 2005 the M 2 AV participated in the meteorological field experiment ‘LAUNCH 2005’ in Linden berg near Berlin. The M 2 AV data were compared with lidar and sodar/RASS measurements. Furthermore, an in situ comparison of temperature, humidity and wind vector data with the helicopter-borne turbulence probe Helipod was analysed and gave information about the M 2 AV data quality. Zusammenfassung Dieser Artikel befasst sich mit dem unbemannten meteorologischen Kleinflugzeug (M 2 AV), das vom Institut fur Luft- und Raumfahrtsysteme der Technischen Universitat Braunschweig entwickelt wurde. Die Grenzen bemannter Flugmessungen fuhrten zur Entwicklung eines neuartigen, unbemannten meteorologischen Flugmesssystems, dem M 2 AV. Die Aufgabe bestand darin, ein Sensorpaket fur ein bestehendes Tragerflugzeug, das unbemannte Kleinstflugzeug ‘Carolo T200’ zu en twickeln, zu testen und zu verifizieren. Dabei mussten insbesondere die Rahmenbedingungen bezuglich der Grose und der Masse beachtet werden. Trotzdem sollte das M 2 AV in der Lage sein, innerhalb der atmospharischen Grenzschicht den Windvektor zu messen und Turbulenz aufzulosen. Das entwickelte System gestattet dicht aufeinanderfolgende Messungen als okonomische Unterstutzung wahrend meteorologischer Kampagnen. Es wird die Technik des M 2 AV im Detail beschrieben und die Ergebnisse aus der wissenschaftlichen Untersuchung von meteorologischen Datensatzen verwendet, um die Datenqualitat und die raumliche Auflosung einzuschatzen.

[1]  Douglas C. Engelbart,et al.  First Results of Measurements with a Newly-Designed Phased-Array Sodar with RASS , 1999 .

[2]  M. Ek,et al.  Spatial variability of turbulent fluxes and roughness lengths in HAPEX-MOBILHY , 1993 .

[3]  Marco Buschmann MMAV—a miniature unmanned aerial vehicle (Mini-UAV) for meteorological purposes , 2004 .

[4]  F. Beyrich,et al.  The LITFASS project of DWD and the LITFASS-98 experiment: The project strategy and the experimental setup , 2002 .

[5]  Jielun Sun,et al.  Calculation of Area-Averaged Fluxes: Application to BOREAS , 2001 .

[6]  Thomas Spiess,et al.  Comparison of 'M 2 AV' unmanned airborne meteorological measurements with remote sensing and the Helipod , 2006 .

[7]  F. Beyrich,et al.  Airborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study , 2002 .

[8]  Donald H. Lenschow,et al.  Aircraft measurements in the boundary layer , 1986 .

[9]  E. Batchvarova,et al.  Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: Selected results from the LITFASS-98 experiment , 2002 .

[10]  Jens Bange,et al.  A New Method for the Determination of Area-Averaged Turbulent Surface Fluxes from Low-Level Flights Using Inverse Models , 2006 .

[11]  J. I. MacPherson,et al.  An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat , 1989 .

[12]  J. Grunwald,et al.  Comparison of areally averaged turbulent fluxes over non-homogeneous terrain: Results from the EFEDA-field experiment , 1996 .

[13]  Jens Bange,et al.  Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer Over Land – a Case Study , 1999 .

[14]  Andreas Muschinski,et al.  First In Situ Evidence for Coexisting Submeter Temperature and Humidity Sheets in the Lower Free Troposphere , 1998 .

[15]  J. Bösenberg,et al.  Laser remote sensing of the planetary boundary layer , 2002 .