Experimental and simulated temperature variations in a LiFePO4-20Ah battery during discharge process

[1]  I. Dincer,et al.  Experimental investigation and simulation of temperature distributions in a 16Ah-LiMnNiCoO2 battery during rapid discharge rates , 2016, Heat and Mass Transfer.

[2]  Ibrahim Dincer,et al.  Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery , 2016 .

[3]  Wen Tong Chong,et al.  Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling , 2016 .

[4]  Wenzhong Gao,et al.  A reduced low-temperature electro-thermal coupled model for lithium-ion batteries , 2016 .

[5]  M. Fowler,et al.  Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions , 2016 .

[6]  Yves Dube,et al.  A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures , 2016 .

[7]  Ibrahim Dincer,et al.  Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery , 2016 .

[8]  Jiateng Zhao,et al.  Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery , 2015 .

[9]  Lip Huat Saw,et al.  Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging , 2015 .

[10]  Zhengguo Zhang,et al.  A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling , 2015 .

[11]  Roydon Andrew Fraser,et al.  Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach , 2015 .

[12]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[13]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[14]  Dirk Uwe Sauer,et al.  Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination , 2013 .

[15]  M. Kazerani,et al.  Optimal sizing of the Energy Storage System (ESS) in a Battery-Electric Vehicle , 2013, 2013 IEEE Transportation Electrification Conference and Expo (ITEC).

[16]  Rami Abousleiman,et al.  Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries , 2013 .

[17]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[18]  Ui Seong Kim,et al.  Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances between Current Collecting Tab and Lead Wire , 2013 .

[19]  Chakib Alaoui,et al.  Solid-State Thermal Management for Lithium-Ion EV Batteries , 2013, IEEE Transactions on Vehicular Technology.

[20]  Shaohua Lin,et al.  A linear parameter-varying model for HEV/EV battery thermal modeling , 2012, 2012 IEEE Energy Conversion Congress and Exposition (ECCE).

[21]  Christian Veje,et al.  Analysis of the thermal behavior of a LiFePO4 battery cell , 2012 .

[22]  Yonghuang Ye,et al.  Electro-thermal cycle life model for lithium iron phosphate battery , 2012 .

[23]  R. Ciobanu,et al.  Development of a thermal simulation and testing model for a superior lithium-ion-polymer battery , 2012, 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM).

[24]  Kim Yeow,et al.  Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach , 2012 .

[25]  M. Ceraolo,et al.  High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells , 2012, 2012 IEEE International Electric Vehicle Conference.

[26]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[27]  T. Kim,et al.  A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects , 2011, IEEE Transactions on Energy Conversion.

[28]  Pavol Bauer,et al.  A practical circuit-based model for Li-ion battery cells in electric vehicle applications , 2011, 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC).

[29]  Miroslav Krstic,et al.  PDE model for thermal dynamics of a large Li-ion battery pack , 2011, Proceedings of the 2011 American Control Conference.

[30]  Qiang Miao,et al.  Prognostics and health monitoring for lithium-ion battery , 2011, Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics.

[31]  Hongwen He,et al.  Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach , 2011 .

[32]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[33]  A. Hollenkamp,et al.  Cycling and rate performance of Li–LiFePO4 cells in mixed FSI–TFSI room temperature ionic liquids , 2010 .

[34]  Jae-Sung Park,et al.  Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries , 2010 .

[35]  B. Vural,et al.  A dynamic lithium-ion battery model considering the effects of temperature and capacity fading , 2009, 2009 International Conference on Clean Electrical Power.

[36]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[37]  Huakun Liu,et al.  Synthesis and electrochemical performance of doped LiCoO2 materials , 2007 .

[38]  J. Tu,et al.  Spray-drying technology for the synthesis of nanosized LiMn2O4 cathode material , 2007 .

[39]  A. Ritchie,et al.  Recent developments and likely advances in lithium-ion batteries , 2006 .

[40]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[41]  R. Torresi,et al.  Cathodes for lithium ion batteries: the benefits of using nanostructured materials , 2006 .

[42]  C. Julien Local structure of lithiated manganese oxides , 2006 .

[43]  Jianjun Li,et al.  Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries , 2005 .

[44]  Hui Cao,et al.  LiAlO-coated LiCoO as cathode material for lithium ion batteries , 2005 .

[45]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[46]  Yang Shao-Horn,et al.  Atomic resolution of lithium ions in LiCoO2 , 2003, Nature materials.

[47]  Liquan Chen,et al.  Al2O3-coated LiCoO2 as cathode material for lithium ion batteries , 2002 .

[48]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[49]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[50]  Mark N. Obrovac,et al.  Lithium-ion batteries , 1998 .

[51]  A. Pesaran,et al.  Thermal Performance of EV and HEV Battery Modules and Packs , 1997 .

[52]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[53]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[54]  Bryan L. McKinney,et al.  THERMAL MANAGEMENT OF LEAD-ACID BATTERIES FOR ELECTRIC VEHICLES , 1983 .