Big Ramsey degrees using parameter spaces

We show that the universal homogeneous partial order has finite big Ramsey degrees and discuss several corollaries. Our proof uses parameter spaces and the Carlson–Simpson theorem rather than (a strengthening of) the Halpern–Läuchli theorem and the Milliken tree theorem, which are the primary tools used to give bounds on big Ramsey degrees elsewhere (originating from work of Laver and Milliken). This new technique has many additional applications. To demonstrate this, we show that the homogeneous universal triangle-free graph has finite big Ramsey degrees, thus giving a short proof of a recent result of Dobrinen.

[1]  L. Nguyen Van Th'e,et al.  Structural Ramsey theory of metric spaces and topological dynamics of isometry groups , 2008, 0804.1593.

[2]  Norbert Sauer Vertex partitions of metric spaces with finite distance sets , 2012, Discret. Math..

[3]  Maurice Pouzet,et al.  Indivisible ultrametric spaces , 2007 .

[4]  Domingos Dellamonica,et al.  Distance Preserving Ramsey Graphs , 2012, Comb. Probab. Comput..

[5]  Jan Hubivcka,et al.  Structural Ramsey Theory and the Extension Property for Partial Automorphisms , 2020, ArXiv.

[6]  Norbert Sauer Edge partitions of the countable triangle free homogeneous graph , 1998, Discret. Math..

[7]  M. Sokic,et al.  Ramsey property, ultrametric spaces, finite posets, and universal minimal flows , 2013 .

[8]  Claude Laflamme,et al.  Partition properties of the dense local order and a colored version of Milliken’s theorem , 2010, Comb..

[9]  Jean A. Larson Counting canonical partitions in the random graph , 2008, Comb..

[10]  Norbert Sauer COLORING SUBGRAPHS OF THE RADO GRAPH , 2006, Comb..

[11]  Z. Hedrlín,et al.  On universal partly ordered sets and classes , 1969 .

[12]  W. Fouché Symmetry and the Ramsey degree of posets , 1997, Discret. Math..

[13]  Timothy J. Carlson,et al.  An infinitary version of the Graham-Leeb-Rothschild theorem , 1987, J. Comb. Theory, Ser. A.

[14]  Andy Zucker Big Ramsey degrees and topological dynamics , 2018, Groups, Geometry, and Dynamics.

[15]  Vojtěch Rödl,et al.  A structural generalization of the Ramsey theorem , 1977 .

[16]  Natasha Dobrinen Ramsey Theory on Infinite Structures and the Method of Strong Coding Trees , 2019, 1909.05985.

[17]  Maurice Pouzet,et al.  Divisibility of countable metric spaces , 2007, Eur. J. Comb..

[18]  Martin Balko,et al.  Big Ramsey degrees of 3-uniform hypergraphs , 2019, ArXiv.

[19]  P. ERDŐS,et al.  UNSOLVED AND SOLVED PROBLEMS IN SET THEORY , 1971 .

[20]  Vojkan Vuksanovic,et al.  Canonical Partitions Of Universal Structures , 2006, Comb..

[21]  Jaroslav Nesetril,et al.  Metric spaces are Ramsey , 2007, Eur. J. Comb..

[22]  Jaroslav Nešetřil,et al.  Finite presentation of homogeneous graphs, posets and Ramsey classes , 2005 .

[23]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[24]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[25]  Natasha Dobrinen The Ramsey Theory of Henson graphs , 2019 .

[26]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[27]  Harry Furstenberg,et al.  Idempotents in compact semigroups and Ramsey theory , 1989 .

[28]  Richard Laver,et al.  Products of Infinitely Many Perfect Trees , 1984 .

[29]  Vojtěch Rödl,et al.  Combinatorial partitions of finite posets and lattices —Ramsey lattices , 1984 .

[30]  Combinatorics Springer-Verlag Coloring of Universal Graphs , 1986 .

[31]  N.W. Sauer Distance Sets of Urysohn Metric Spaces , 2013, Canadian Journal of Mathematics.

[32]  Claude Laflamme,et al.  Rainbow Ramsey simple structures , 2016, Discret. Math..

[33]  W. T. Trotter,et al.  Graphs and Orders in Ramsey Theory and in Dimension Theory , 1985 .

[34]  Lionel Nguyen Van Thé Ramsey degrees of finite ultrametric spaces, ultrametric Urysohn spaces and dynamics of their isometry groups , 2009, Eur. J. Comb..

[35]  Dragan Masulovic,et al.  A Ramsey theorem for multiposets , 2019, Eur. J. Comb..

[36]  Jaroslav Nesetril,et al.  All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms) , 2016, ArXiv.

[37]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[38]  H. J. Prmel,et al.  Ramsey Theory for Discrete Structures , 2013 .

[39]  A. Pultr,et al.  Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .

[40]  Vojtech Rödl,et al.  Ramsey Partial Orders from Acyclic Graphs , 2018, Order.

[41]  Andy Zucker A note on big Ramsey degrees , 2020 .

[42]  J. D. Halpern,et al.  A partition theorem , 1966 .

[43]  Manuel Bodirsky,et al.  Ramsey classes: examples and constructions , 2015, Surveys in Combinatorics.

[44]  Jan Hubivcka,et al.  All those EPPA classes (Strengthenings of the Herwig-Lascar theorem) , 2019, 1902.03855.

[45]  Martin Balko,et al.  Big Ramsey degrees of 3-uniform hypergraphs are finite , 2020, Combinatorica.

[46]  Stevo Todorcevic,et al.  Introduction to Ramsey Spaces , 2010 .

[47]  Stephen G. Simpson,et al.  A Dual Form of Ramsey's Theorem , 1984 .

[48]  Min Zhao,et al.  A Ramsey theorem for partial orders with linear extensions , 2017, Eur. J. Comb..

[49]  Jaroslav Nesetril,et al.  Universal partial order represented by means of oriented trees and other simple graphs , 2005, Eur. J. Comb..

[50]  Konstantinos Tyros,et al.  Measurable events indexed by words , 2014, J. Comb. Theory, Ser. A.

[51]  Natasha Dobrinen The Ramsey theory of the universal homogeneous triangle-free graph , 2020, J. Math. Log..

[52]  Dragan Masulovic Pre-adjunctions and the Ramsey property , 2018, Eur. J. Comb..

[54]  Pandelis Dodos,et al.  Ramsey Theory for Product Spaces , 2016 .

[55]  Bernd Voigt,et al.  Baire sets of $k$-parameter words are Ramsey , 1985 .

[56]  Jaroslav Nesetril,et al.  Some Examples of Universal and Generic Partial Orders , 2009, AMS-ASL Joint Special Session.

[57]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..