Study of Structural, Optoelectronic and Elastic Properties of MAX Phase of Ti2BrX (X = B, C and N) by Density Functional Theory

[1]  Md. Mer Mosharraf Hossain,et al.  A comparative DFT exploration on M- and A-site double transition metal MAX phase, Ti3ZnC2 , 2022, Open Ceramics.

[2]  D. Rached,et al.  The stability analysis and efficiency of the new MAX-phase compounds M3GaC2 (M: Ti or Zr): A first-principles assessment , 2022, Results in Physics.

[3]  J. Rosen,et al.  Theoretical predictions of phase stability for orthorhombic and hexagonal ternary MAB phases. , 2022, Physical chemistry chemical physics : PCCP.

[4]  S. Goumri‐Said,et al.  Physical Properties Investigations of Ternary-Layered Carbides M2PbC (M = Ti, Zr and Hf): First-Principles Calculations , 2021, Crystals.

[5]  S. Naqib,et al.  A density functional theory approach to the effects of C and N substitution at the B-site of the first boride MAX phase Nb2SB , 2021, Materials Today Communications.

[6]  R. Ahmed,et al.  Theoretical investigation of Zr2PbC, (V0.25Zr0.75)2PbC, (V0.5Zr0.5)2PbC, V0.75Zr0.25)2PbC, and V2PbC MAX phases: A DFT based study , 2021 .

[7]  T. Mellan,et al.  Stability of Zr-Al-C and Ti-Al-C MAX phases: A theoretical study , 2021 .

[8]  D. Rached,et al.  The Vanadium-doping effect on physical properties of the Zr2AlC MAX phase compound , 2021 .

[9]  G. Tang,et al.  Ab initio predictions of structure and physical properties of the Zr2GaC and Hf2GaC MAX phases under pressure , 2021, Scientific Reports.

[10]  D. Johrendt,et al.  The MAX phase borides Zr2SB and Hf2SB , 2020 .

[11]  A. Chroneos,et al.  Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC , 2019, Journal of Physics and Chemistry of Solids.

[12]  I. Opahle,et al.  High-throughput design of 211−M2AX compounds , 2019, Physical Review Materials.

[13]  Kurt Stokbro,et al.  QuantumATK: an integrated platform of electronic and atomic-scale modelling tools , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  M. M. Hossain,et al.  Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations , 2016, 1612.02907.

[15]  Christopher M. Kube,et al.  Elastic anisotropy of crystals , 2016 .

[16]  K. Ostrikov,et al.  Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study , 2015, 1511.08632.

[17]  Y. Sakka,et al.  Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  S. Goumri‐Said,et al.  Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC , 2010 .

[19]  S. Goumri‐Said,et al.  Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC , 2009 .

[20]  A. Bouhemadou,et al.  Structural, elastic and electronic properties of XNCa3 (X = Ge, Sn and Pb) compounds , 2009 .

[21]  S. Goumri‐Said,et al.  Steric effect on the M site of nanolaminate compounds M2SnC (M = Ti, Zr, Hf and Nb) , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  A. E. Merad,et al.  Effect of Chromium and Vanadium on Nanolayered Ternary Carbides: AB Initio Study , 2009 .

[23]  M. Kanoun,et al.  Structure of the ternary carbide Ti3SnC2 from ab initio calculations , 2008 .

[24]  M. Barsoum,et al.  Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4 , 2006 .

[25]  G. Hug Electronic structures of and composition gaps among the ternary carbides Ti 2 M C , 2006 .

[26]  R. Ahuja,et al.  Coupling in nanolaminated ternary carbides studied by theoretical means: The influence of electronic potential approximations , 2006 .

[27]  Zhengming Sun,et al.  Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2 , 2006 .

[28]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[29]  S. Kalidindi,et al.  Processing and Mechanical Properties of Ti3SiC2: II, Effect of Grain Size and Deformation Temperature , 2004 .

[30]  R. Ahuja,et al.  Ab initio calculations and experimental determination of the structure of Cr2AlC , 2004 .

[31]  S. Lofland,et al.  Elastic and electronic properties of select M2AX phases , 2004 .

[32]  M. Barsoum,et al.  Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr) , 2000 .

[33]  Y. Zhou,et al.  Electronic structure of the layered ternary carbides Ti2SnC and Ti2GeC , 2000 .

[34]  M. Barsoum,et al.  Materials science: Ti3SiC2 has negligible thermopower , 2000, Nature.

[35]  P. Finkel,et al.  Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2 , 2000 .

[36]  M. Barsoum,et al.  Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 , 1999 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[39]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[40]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[41]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[42]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[43]  M. Sundberg,et al.  Alumina forming high temperature silicides and carbides , 2004 .

[44]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[45]  Naohiro Soga,et al.  Elastic constants and their measurement , 1974 .

[46]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .