Are Adakites Slab Melts or High-pressure Fractionated Mantle Melts?

Adakites are unusual felsic igneous rocks commonly associated with asthenospheric slab window opening or fast subduction of a young ( < 25 Ma) oceanic plate that may allow slab melting at shallow depths. Their genesis has been extensively debated, as they are also observed in other geodynamic settings where thermal models do not predict slab melting in the fore-arc region. Here, we present a new approach that provides new constraints on adakite petrogenesis in hot subduction zones (e.g. the Philippines) and above an asthenospheric window (e.g. Baja California, Mexico). We use amphibole compositions to estimate magma storage depths and the composition of the host melts to test the hypothesis that adakites are pristine slab melts. We find that adakites from the Philippines and Baja California fore-arcs formed in two distinct petrogenetic scenarios: in the Philippines, water-rich mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature; in Baja California, slab melts that percolated through the mantle wedge mixed or mingled with water-rich mantle melts within a lower crustal ( (cid:2) 30 km depth) magma storage region before stalling in the upper arc crust ( (cid:2) 7–15 km depth). Alternatively, the Baja California adakites may represent mixing products between high-pressure differentiated mantle melts and mantle melts in a lower crustal magma reservoir, periodically refluxed by mantle melts. Thus, slab melting is not necessarily required to produce an adakitic geochemical fingerprint in hot subduction zones. The hot downgoing plate may cross the ‘adakitic window’ and melt in specific geodynamic settings such as the opening of a slab tear, as beneath Baja California.

[1]  S. Hsu,et al.  Serpentinization of the fore-arc mantle along the Taiwan arc-continent collision of the northern Manila subduction zone inferred from gravity modeling , 2016 .

[2]  I. Franchi,et al.  Crustal differentiation in the early solar system: clues from the unique achondrite Northwest Africa 7325 (NWA 7325) , 2015 .

[3]  Katherine A. Kelley,et al.  Composition of the slab-derived fluids released beneath the Mariana forearc: Evidence for shallow dehydration of the subducting plate , 2015 .

[4]  T. Rooney,et al.  Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano , 2014, Contributions to Mineralogy and Petrology.

[5]  J. Blundy,et al.  Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland) , 2014, Contributions to Mineralogy and Petrology.

[6]  A. Kushnir,et al.  Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia , 2014, Contributions to Mineralogy and Petrology.

[7]  A. Stepanov,et al.  Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions , 2014, Contributions to Mineralogy and Petrology.

[8]  E. Chaussard,et al.  Regional controls on magma ascent and storage in volcanic arcs , 2014 .

[9]  J. Nakajima,et al.  Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling , 2014 .

[10]  Katherine A. Kelley,et al.  Geodynamic evolution of a forearc rift in the southernmost Mariana Arc , 2013 .

[11]  Katherine A. Kelley,et al.  Nature and distribution of slab‐derived fluids and mantle sources beneath the Southeast Mariana forearc rift , 2013 .

[12]  C. Langmuir,et al.  Chemical Systematics and Hydrous Melting of the Mantle in Back‐Arc Basins , 2013 .

[13]  S. Peacock Thermal Structure and Metamorphic Evolution of Subducting Slabs , 2013 .

[14]  H. Iwamori,et al.  Generation of adakites in a cold subduction zone due to double subducting plates , 2012, Contributions to Mineralogy and Petrology.

[15]  T. Grove,et al.  The Role of H 2 O in Subduction Zone Magmatism , 2012 .

[16]  D. Ruscitto,et al.  Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs , 2012 .

[17]  M. Kendrick,et al.  High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction , 2011 .

[18]  A. Langone,et al.  High-Mg Andesite Petrogenesis by Amphibole Crystallization and Ultramafic Crust Assimilation: Evidence from Adamello Hornblendites (Central Alps, Italy) , 2011 .

[19]  C. Macpherson,et al.  Hf–Nd isotope and trace element constraints on subduction inputs at island arcs: Limitations of Hf anomalies as sediment input indicators , 2011 .

[20]  T. Rooney,et al.  Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? , 2011 .

[21]  T. Rooney,et al.  Crystal fractionation processes at Baru volcano from the deep to shallow crust , 2010 .

[22]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[23]  E. Bourdon,et al.  Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador) , 2010 .

[24]  Katherine A. Kelley,et al.  Mantle Melting as a Function of Water Content beneath the Mariana Arc , 2010 .

[25]  M. Benoit,et al.  Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico: Discussion , 2009 .

[26]  T. Plank,et al.  Emerging geothermometers for estimating slab surface temperatures , 2009 .

[27]  P. Ulmer,et al.  Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids , 2009 .

[28]  M. Benoit,et al.  Temporal geochemical evolution of Neogene volcanism in northern Baja California (27°–30° N): Insights on the origin of post-subduction magnesian andesites , 2008 .

[29]  A. Carreño,et al.  Petrologic diversity of Plio-Quaternary post-subduction volcanism in northwestern Mexico: An example from Isla San Esteban, Gulf of California , 2008 .

[30]  M. Grégoire,et al.  Metasomatic interactions between slab-derived melts and depleted mantle: Insights from xenoliths within Monglo adakite (Luzon arc, Philippines) , 2008 .

[31]  P. Castillo Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico , 2008 .

[32]  M. Tiepolo,et al.  Trace-Element Partitioning Between Amphibole and Silicate Melt , 2007 .

[33]  I. Savov,et al.  Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc , 2007 .

[34]  R. Solidum,et al.  Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines , 2007 .

[35]  C. Macpherson,et al.  Amphibole “sponge” in arc crust? , 2007 .

[36]  M. Grégoire,et al.  The oceanic substratum of Northern Luzon: Evidence from xenoliths within Monglo adakite (the Philippines) , 2007 .

[37]  J. Richards,et al.  Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis , 2007 .

[38]  Cin-Ty A. Lee,et al.  Quantifying trace element disequilibria in mantle xenoliths and abyssal peridotites , 2007 .

[39]  H. Dick,et al.  Pyroxenites from the Southwest Indian Ridge, 9–16°E: Cumulates from Incremental Melt Fractions Produced at the Top of a Cold Melting Regime , 2007 .

[40]  J. Royer,et al.  Slab-tearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, México , 2007 .

[41]  M. Monzier,et al.  Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador) , 2007 .

[42]  N. Chatterjee,et al.  The influence of H2O on mantle wedge melting , 2006 .

[43]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[44]  H. Bellon,et al.  La Purísima volcanic field, Baja California Sur (Mexico): Miocene to Quaternary volcanism related to subduction and opening of an asthenospheric window , 2006 .

[45]  M. Thirlwall,et al.  Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines , 2006 .

[46]  H. Bellon,et al.  Geochemistry of Adakites from the Philippines: Constraints on Their Origins , 2005 .

[47]  R. Stern,et al.  Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components , 2005 .

[48]  S. Scott,et al.  Arc to rift transitional volcanism in the Santa Rosalía Region, Baja California Sur, Mexico , 2005 .

[49]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[50]  B. Scaillet,et al.  Experimental Constraints on the Origin of the 1991 Pinatubo Dacite , 2003 .

[51]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[52]  R. Solidum,et al.  Geochemistry of lavas from Negros Arc, west central Philippines: Insights into the contribution from the subducting slab , 2003 .

[53]  Simon M. Peacock,et al.  Serpentinization of the forearc mantle , 2003 .

[54]  N. Chatterjee,et al.  Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends , 2003 .

[55]  J. Davidson,et al.  Dubious case for slab melting in the Northern volcanic zone of the Andes , 2003 .

[56]  Y. Rosenthal,et al.  Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific , 2003 .

[57]  M. Benoit,et al.  Geochemical Diversity of Late Miocene Volcanism in Southern Baja California, Mexico: Implication of Mantle and Crustal Sources during the Opening of an Asthenospheric Window , 2002, The Journal of Geology.

[58]  M. Tiepolo,et al.  The compositions of mantle-derived melts developed during the Alpine continental collision , 2002 .

[59]  I. Carmichael The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico , 2002 .

[60]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[61]  Francis T. Wu,et al.  A new insight on the geometry of subducting slabs in northern Luzon, Philippines , 2001 .

[62]  M. Benoit,et al.  Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? , 2001 .

[63]  D. Baker,et al.  Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity , 2000 .

[64]  L. Fontaine,et al.  Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Batan (Philippines) , 2000 .

[65]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[66]  H. Bellon,et al.  Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines) , 2000 .

[67]  J. Eiler,et al.  Primitive CaO‐rich, silica‐undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene‐rich lithologies in the petrogenesis of arc magmas , 2000 .

[68]  B. Scaillet,et al.  Fluid-present melting of ocean crust in subduction zones , 1999 .

[69]  C. Fanning,et al.  2.5 b.y. of punctuated Earth history as recorded in a single rock , 1999 .

[70]  M. Norman,et al.  Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa , 1999 .

[71]  B. W. Evans,et al.  The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and Pre-eruption P–T–fO2–fH2O Conditions of the Dacite Magma , 1999 .

[72]  H. Martin Adakitic magmas: modern analogues of Archaean granitoids , 1999 .

[73]  R. Solidum,et al.  Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting , 1999 .

[74]  C. Newhall,et al.  Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines , 1998 .

[75]  S. Nakano,et al.  Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts , 1997 .

[76]  N. Petford,et al.  Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru , 1996 .

[77]  H. Bellon,et al.  Fusion de la croute oceanique dans les zones de subduction/collision recentes; l'exemple de Mindanao (Philippines) , 1996 .

[78]  Tsanyao Frank Yang,et al.  A double island arc between Taiwan and Luzon: consequence of ridge subduction , 1996 .

[79]  R. Kilian,et al.  Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone , 1996 .

[80]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[81]  J. Anderson,et al.  The Effects of Temperature and ƒ O 2 on the Al-in-Hornblende Barometer , 1995 .

[82]  T. Dunn,et al.  Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite , 1995 .

[83]  A. Hofmann,et al.  Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas , 1995, Nature.

[84]  S. Kanisawa,et al.  Early Cretaceous Sr‐rich silicic magmatism by slab melting in the Kitakami Mountains, northeast Japan , 1994 .

[85]  T. Dunn,et al.  Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites , 1994 .

[86]  Andrew G. Tindle,et al.  PROBE-AMPH—a spreadsheet program to classify microprobe-derived amphibole analyses , 1994 .

[87]  H. Bellon,et al.  Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines , 1993 .

[88]  N. Petford,et al.  Generation of sodium-rich magmas from newly underplated basaltic crust , 1993, Nature.

[89]  M. Schmidt Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer , 1992 .

[90]  R. Punongbayan,et al.  Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulphur-rich silicic magmas , 1991, Nature.

[91]  M. Drummond,et al.  A model for Trondhjemite‐Tonalite‐Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons , 1990 .

[92]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[93]  R. Tessadri,et al.  EMP-AMPH—a hypercard program determine the name of an amphibole for electron microprobe analysis according to the international mineralogical association scheme , 1990 .

[94]  Marie C. Johnson,et al.  Experimental calibration of the aluminum-in-hornblende geobarometer with application , 1989 .

[95]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[96]  Y. Tatsumi Migration of fluid phases and genesis of basalt magmas in subduction zones , 1989 .

[97]  B. Leake,et al.  The International Mineralogical Association amphibole nomenclature scheme: computerization and its consequences , 1984, Mineralogical Magazine.

[98]  M. Tatsumoto,et al.  Partition coefficients of Hf, Zr, and ree between phenocrysts and groundmasses , 1984 .

[99]  J. C. Allen,et al.  The stability of amphibole in andesite and basalt at high pressures , 1983 .

[100]  C. Dupuy,et al.  Partition coefficients of trace elements: Application to volcanic rocks of St. Vincent, West Indies , 1983 .

[101]  T. Sekine,et al.  The formation of mantle phlogopite in subduction zone hybridization , 1982 .

[102]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[103]  B. Leake,et al.  Nomenclature of Amphiboles , 1978, Mineralogical Magazine.

[104]  R. Kay Aleutian magnesian andesites: Melts from subducted Pacific ocean crust , 1978 .

[105]  T. Atwater Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America , 1970 .

[106]  J. A. Philpotts,et al.  Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II , 1970 .

[107]  J. Anderson,et al.  The effects of temperature and f O 2 on the Alin-hornblende barometer , 2018 .

[108]  B. Scaillet,et al.  Experimental Constraints on Sulphur Behaviour in Subduction Zones: Implications for TTG and Adakite Production and the Global Sulphur Cycle since the Archean , 2013 .

[109]  M. Benoit,et al.  Volcanic Markers of the Post-Subduction Evolution of Baja California and Sonora, Mexico: Slab Tearing Versus Lithospheric Rupture of the Gulf of California , 2011 .

[110]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[111]  L. Hor,et al.  Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons , 2007 .

[112]  JaNn M. Hlvrnnansrnorr Aluminum in hornblende : An empirical igneous geobarometer , 2007 .

[113]  C. Fisher,et al.  Back-arc spreading systems: Geological, biological, chemical, and physical interactions , 2006 .

[114]  Silvana Hidalgo Les interactions entre magmas calco-alcalins "classiques" et adakitiques : exemple du complexe volcanique Atacazo-Ninahuilca (Equateur) , 2006 .

[115]  D. Thorkelson,et al.  Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas , 2005 .

[116]  H. Martina,et al.  An overview of adakite , tonalite – trondhjemite – granodiorite ( TTG ) , and sanukitoid : relationships and some implications for crustal evolution , 2004 .

[117]  M. Benoit,et al.  Spatial and temporal evolution of basalts and magnesian andesites (''bajaites'') from Baja California, Mexico: the role of slab melts , 2003 .

[118]  Alfredo Aguillón-Robles Subduction de dorsale et évolution du magmatisme associé : exemple de la basse Californie (Mexique) du miocène au quaternaire" , 2002 .

[119]  W. Franke,et al.  XI Geodynamic Evolution , 1995 .

[120]  S. Peacock,et al.  Partial melting of subducting oceanic crust , 1994 .

[121]  R. Stewart,et al.  Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama , 1991 .

[122]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[123]  T. Atwater Plate tectonic history of the northeast Pacific and western North America , 1989 .

[124]  Donald M. Hussong,et al.  The Eastern Pacific Ocean and Hawaii , 1989 .

[125]  S. Taylor,et al.  Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey , 1976 .