Molecular diagnostics identifies risks for graft dysfunction despite borderline histologic changes.

[1]  D. Rush,et al.  Banff 2013 Meeting Report: Inclusion of C4d‐Negative Antibody‐Mediated Rejection and Antibody‐Associated Arterial Lesions , 2014, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[2]  M. Stegall,et al.  Kidney Allograft Survival After Acute Rejection, the Value of Follow‐Up Biopsies , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[3]  Rachel J. Johnson,et al.  Effect of donor age and cold storage time on outcome in recipients of kidneys donated after circulatory death in the UK: a cohort study , 2013, The Lancet.

[4]  K. Famulski,et al.  Molecular Diagnosis of T Cell‐Mediated Rejection in Human Kidney Transplant Biopsies , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[5]  J. R. Machado,et al.  Distinct expression of interleukin 17, tumor necrosis factor α, transforming growth factor β, and forkhead box P3 in acute rejection after kidney transplantation. , 2013, Annals of diagnostic pathology.

[6]  H. Volk,et al.  B-Cell-Related Biomarkers of Tolerance are Up-Regulated in Rejection-Free Kidney Transplant Recipients , 2013, Transplantation.

[7]  K. Famulski,et al.  Molecular phenotypes of acute kidney injury in kidney transplants. , 2012, Journal of the American Society of Nephrology : JASN.

[8]  P. Randhawa The “Borderline” Renal Allograft Biopsy in the Era of Molecular Diagnostics: A Sampling Conundrum? , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[9]  S. Tullius,et al.  Donor Age‐Specific Injury and Immune Responses , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[10]  K. Famulski,et al.  The Nature of Biopsies with “Borderline Rejection” and Prospects for Eliminating This Category , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[11]  A. Butte,et al.  Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. , 2011, Kidney international.

[12]  A. Melk,et al.  Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. , 2011, Kidney international.

[13]  Jeff Reeve,et al.  A molecular classifier for predicting future graft loss in late kidney transplant biopsies. , 2010, The Journal of clinical investigation.

[14]  J. Chapman,et al.  Transcriptome Changes of Chronic Tubulointerstitial Damage in Early Kidney Transplantation , 2010, Transplantation.

[15]  T. Mcclanahan,et al.  Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis , 2010, The Journal of experimental medicine.

[16]  L. Resende,et al.  Impact of donor age on renal allograft function and survival. , 2009, Transplantation proceedings.

[17]  T. Nagato,et al.  Expression and functional role of MDL‐1 (CLEC5A) in mouse myeloid lineage cells , 2009, Journal of leukocyte biology.

[18]  Martin M. Schumacher,et al.  Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection , 2009, Transplant international : official journal of the European Society for Organ Transplantation.

[19]  R. Danguilan,et al.  Impact of Banff borderline acute rejection among renal allograft recipients. , 2008, Transplantation proceedings.

[20]  Chi-Huey Wong,et al.  CLEC5A is critical for dengue-virus-induced lethal disease , 2008, Nature.

[21]  C. Livasy,et al.  Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. , 2007, Experimental and molecular pathology.

[22]  J. D. de Fijter,et al.  Untreated rejection in 6-month protocol biopsies is not associated with fibrosis in serial biopsies or with loss of graft function. , 2006, Journal of the American Society of Nephrology : JASN.

[23]  T. Larson,et al.  Kidney Allograft Fibrosis and Atrophy Early After Living Donor Transplantation , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[24]  S. Horvath,et al.  Kidney Transplant Rejection and Tissue Injury by Gene Profiling of Biopsies and Peripheral Blood Lymphocytes , 2004, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[25]  C. Thorn,et al.  Tissue‐specific regulation of the human acute‐phase serum amyloid A genes, SAA1 and SAA2, by glucocorticoids in hepatic and epithelial cells , 2003, European journal of immunology.

[26]  M. Sarwal,et al.  Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. , 2003, The New England journal of medicine.

[27]  T. Larson,et al.  Subclinical Rejection in Tacrolimus-Treated Renal Transplant Recipients , 2002, Transplantation.

[28]  E. Woodle,et al.  The relationship of untreated borderline infiltrates by the Banff criteria to acute rejection in renal allograft biopsies. , 1999, Journal of the American Society of Nephrology : JASN.

[29]  F. Marumo,et al.  Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. , 1998, Biochemical and biophysical research communications.

[30]  S. Weremowicz,et al.  Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine. , 1997, Genomics.

[31]  H. Gritsch,et al.  Caraveric renal transplantation using donors over 60 years old— 5 year follow-up , 1997 .

[32]  P. Kuo,et al.  Significance of the Banff borderline biopsy. , 1996, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[33]  D. Rush,et al.  Sequential protocol biopsies in renal transplant patients. Clinico-pathological correlations using the Banff schema. , 1995, Transplantation.

[34]  P. Huie,et al.  RANTES chemokine expression in cell-mediated transplant rejection of the kidney , 1994, The Lancet.

[35]  D F DAVIES,et al.  Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. , 1950, The Journal of clinical investigation.

[36]  G. Einecked,et al.  Banff 07 Classification of Renal Allograft Pathology : Updates and Future Directions , 2008 .

[37]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[38]  E. Condom,et al.  Early protocol renal allograft biopsies and graft outcome. , 1997, Kidney international.

[39]  H. Gritsch,et al.  Cadaveric renal transplantation using donors over 60 years old--5 year follow-up. , 1997, Transplantation proceedings.