New frontiers in quantum cascade lasers: high performance room temperature terahertz sources

In the last decade quantum cascade lasers (QCLs) have become the most widely used source of mid-infrared radiation, finding large scale applications because of their wide tunability and overall high performance. However far-infrared (terahertz) QCLs have lagged behind in terms of performance and impact due to the inability so far of achieving room temperature operation. Here we review recent research that has led to a new class of QCL light sources that has overcome these limitations leading to room temperature operation in the terahertz spectral range, with nearly 2 mW of optical power and significant tunability, opening up also this region of the spectrum to a wide range of applications.

[1]  Guixin Li,et al.  Nonlinear photonic metasurfaces , 2017 .

[2]  Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces , 2016 .

[3]  J. S. Gomez-Diaz,et al.  Flat nonlinear optics with ultrathin highly-nonlinear metasurfaces , 2016, 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[4]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[5]  M. Amann,et al.  Ultrathin Second‐Harmonic Metasurfaces with Record‐High Nonlinear Optical Response , 2016 .

[6]  Manijeh Razeghi,et al.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers , 2016, Scientific Reports.

[7]  Andrea Alù,et al.  Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response , 2016 .

[8]  Tal Ellenbogen,et al.  Nonlinear Beam Shaping with Plasmonic Metasurfaces , 2016 .

[9]  Yozo Shimada,et al.  Recent Research Trends of Terahertz Measurement Standards , 2015, IEEE Transactions on Terahertz Science and Technology.

[10]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[11]  Sheng Liu,et al.  Phased-array sources based on nonlinear metamaterial nanocavities , 2015, Nature Communications.

[12]  Seungyong Jung,et al.  Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays , 2015 .

[13]  Seungyong Jung,et al.  Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region , 2015 .

[14]  J. S. Gomez-Diaz,et al.  Nonlinear Processes in Multi-Quantum-Well Plasmonic Metasurfaces:Electromagnetic Response, Saturation Effects, Limits and Potentials , 2015, 1506.07095.

[15]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[16]  M. Razeghi,et al.  Quantum cascade lasers: from tool to product. , 2015, Optics express.

[17]  Hideki Hirayama,et al.  Recent progress and future prospects of THz quantum-cascade lasers , 2015, Photonics West - Optoelectronic Materials and Devices.

[18]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[19]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[20]  Mattias Beck,et al.  Octave-spanning semiconductor laser , 2014, Nature Photonics.

[21]  Manijeh Razeghi,et al.  Widely tunable room temperature semiconductor terahertz source , 2014 .

[22]  Seungyong Jung,et al.  External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range , 2014 .

[23]  Roger A Lewis,et al.  A review of terahertz sources , 2014 .

[24]  Seungyong Jung,et al.  Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources , 2014, Nature Communications.

[25]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[26]  Manijeh Razeghi,et al.  Continuous operation of a monolithic semiconductor terahertz source at room temperature , 2014 .

[27]  Qing Hu,et al.  Terahertz laser frequency combs , 2014, Nature Photonics.

[28]  C. Jirauschek,et al.  Experimental investigation of terahertz quantum cascade laser with variable barrier heights , 2014 .

[29]  Edmund H. Linfield,et al.  Terahertz quantum cascade lasers with >1 W output powers , 2014 .

[30]  A. Tahraoui,et al.  High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. , 2014, Optics express.

[31]  P. N. Lebedev,et al.  CERENKOV RADIATION AND TRANSITION RADIATION FROM ELECTROMAGNETIC WAVES , 2014 .

[32]  J. Reno,et al.  Tall-barrier terahertz quantum cascade lasers , 2013 .

[33]  Carlo Sirtori,et al.  Wave engineering with THz quantum cascade lasers , 2013, Nature Photonics.

[34]  M. Beck,et al.  Terahertz quantum cascade lasers based on quaternary AlInGaAs barriers , 2013 .

[35]  Tao Wang,et al.  High power terahertz quantum cascade laser , 2013 .

[36]  Manijeh Razeghi,et al.  Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting , 2013 .

[37]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[38]  Manijeh Razeghi,et al.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation , 2012 .

[39]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[40]  M. Brandstetter,et al.  High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K , 2012 .

[41]  A. Davies,et al.  Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures , 2012, Nature Communications.

[42]  Karun Vijayraghavan,et al.  Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers , 2012 .

[43]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[44]  A. Davies,et al.  Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme , 2012, IEEE Transactions on Terahertz Science and Technology.

[45]  Qi Jie Wang,et al.  GaAs/Al 0.15 Ga 0.85 As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K , 2011 .

[46]  Manijeh Razeghi,et al.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers , 2011 .

[47]  R. J. Temkin,et al.  Vacuum Electronic High Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.

[48]  M. Sinclair,et al.  Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells , 2011, 1105.3523.

[49]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[50]  Qing Hu,et al.  MEMS-based tunable terahertz wire-laser over 330 GHz. , 2011, Optics letters.

[51]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[52]  A. Davies,et al.  GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K , 2010, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[53]  Federico Capasso,et al.  High-performance midinfrared quantum cascade lasers , 2010 .

[54]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[55]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[57]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[58]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[59]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[60]  M. Razeghi,et al.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Qi Jie Wang,et al.  High-Temperature Operation of Terahertz Quantum Cascade Laser Sources , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[62]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[63]  J. Faist,et al.  Terahertz quantum cascade lasers based on In0.53Ga0.47As/In0.52Al0.48As/InP , 2009 .

[64]  Manijeh Razeghi,et al.  High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system , 2009, OPTO.

[65]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[66]  Federico Capasso,et al.  High performance quantum cascade lasers based on three-phonon-resonance design , 2009 .

[67]  Qing Hu,et al.  Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K , 2009 .

[68]  N. Yu,et al.  High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing , 2008, Journal of Lightwave Technology.

[69]  J. Faist,et al.  Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation , 2008 .

[70]  Jonathan A. Fan,et al.  Terahertz quantum cascade lasers operating up to 178 K with copper metal-metal waveguides , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[71]  Federico Capasso,et al.  1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm , 2008 .

[72]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[73]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[74]  Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 , 2008 .

[75]  David Chapman,et al.  Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .

[76]  P. Siegel THz Instruments for Space , 2007, IEEE Transactions on Antennas and Propagation.

[77]  Qing Hu,et al.  High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. , 2007, Optics letters.

[78]  Jérôme Faist,et al.  Horn antennas for terahertz quantum cascade lasers , 2007 .

[79]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[80]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[81]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[82]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[83]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[84]  Federico Capasso,et al.  Surface emitting terahertz quantum cascade laser with a double-metal waveguide. , 2006, Optics express.

[85]  E. Dupont,et al.  Terahertz Emission in Asymmetric Quantum Wells by Frequency Mixing of Midinfrared Waves , 2006, IEEE Journal of Quantum Electronics.

[86]  Martin M. Fejer,et al.  Terahertz-wave generation in quasi-phase-matched GaAs , 2006 .

[87]  Qing Hu,et al.  Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions , 2006 .

[88]  B. Williams,et al.  High-power terahertz quantum cascade lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[89]  Marcella Giovannini,et al.  Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. , 2005, Optics express.

[90]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[91]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[92]  Carlo Sirtori,et al.  Nonlinear phase matching in THz semiconductor waveguides , 2004 .

[93]  E. Linfield,et al.  Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode. , 2004, Optics letters.

[94]  P. Siegel Terahertz technology in biology and medicine , 2004, IEEE Transactions on Microwave Theory and Techniques.

[95]  Qing Hu,et al.  Terahertz quantum-cascade laser operating up to 137 K , 2003 .

[96]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[97]  J. Nishizawa,et al.  Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP , 2003, 2003 International Symposium on Compound Semiconductors.

[98]  A. Cho,et al.  Simultaneously at two wavelengths (5.0 and 7.5 /spl mu/m) singlemode and tunable quantum cascade distributed feedback lasers , 2002 .

[99]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[100]  F. Capasso,et al.  Quantum cascade lasers with double metal-semiconductor waveguide resonators , 2002 .

[101]  Kodo Kawase,et al.  Terahertz wave parametric source , 2002 .

[102]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[103]  Mattias Beck,et al.  High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm , 2001 .

[104]  P. Siegel Terahertz Technology , 2001 .

[105]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[106]  James S. Harris,et al.  Intersubband absorption saturation study of narrow III - V multiple quantum wells in the spectral range , 1997 .

[107]  Jerry R. Meyer,et al.  Optimized second-harmonic generation in asymmetric double quantum wells , 1996 .

[108]  Andrea Fiore,et al.  Quantum Engineering of Optical Nonlinearities , 1996, Science.

[109]  Carlo Sirtori,et al.  Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared , 1994 .

[110]  Bob D. Guenther Terahertz sources , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[111]  S. Umegaki,et al.  Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides , 1992 .

[112]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[113]  M. Fejer,et al.  Observation of extremely large quadratic susceptibility at 9.6-10.8 microm in electric-field-biased AlGaAs quantum wells. , 1989, Physical review letters.

[114]  F. Capasso Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices , 1987, Science.

[115]  Federico Capasso,et al.  Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications , 1986 .

[116]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[117]  V. I. Sidorov,et al.  Sov Phys Semicond , 1975 .

[118]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[119]  Jerry Avorn Technology , 1929, Nature.