Solving some optimal control problems using the barrier penalty function method

In this paper we present a new approach to solve the two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary value problems. The minimized functional depends on control variables and state variables x. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend on u.

[1]  Jean-Paul Zolésio,et al.  Optimization of the domain in elliptic variational inequalities , 1988 .

[2]  J Mossino,et al.  An application of duality to distributed optimal control problems with constraints on the control and the state , 1975 .

[3]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[4]  Pekka Neittaanmäki,et al.  Finite Element Approximation of Variational Problems and Applications , 1990 .

[5]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[6]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[7]  M. R. Osborne,et al.  Trajectory analysis and extrapolation in barrier function methods , 1978, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Michael R. Osborne,et al.  A modified barrier function method with improved rate of convergence for degenerate problems , 1980, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[9]  G. Dantzig,et al.  On the continuity of the minimum set of a continuous function , 1967 .

[10]  J. Mossino Approximation numérique de problèmes de controle optimal avec contrainte sur le controle et sur l'état , 1976 .

[11]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[12]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[13]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[14]  F. Mignot Contrôle dans les inéquations variationelles elliptiques , 1976 .

[15]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[16]  Jong-Shi Pang,et al.  On a class of least-element complementarity problems , 1979, Math. Program..

[17]  R. Chandrasekaran,et al.  A Special Case of the Complementary Pivot Problem , 1969 .

[18]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[19]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[20]  Philip E. Gill,et al.  Practical optimization , 1981 .