On a generalization of Stickelberger's Theorem

We prove two versions of Stickelberger?s Theorem for positive dimensions and use them to compute the connected and irreducible components of a complex algebraic variety. If the variety is given by polynomials of degree ?d in n variables, then our algorithms run in parallel (sequential) time (nlogd)O(1) (dO(n4)). In the case of a hypersurface, the complexity drops to O(n2log2d) (dO(n)). In the proof of the last result we use the effective Nullstellensatz for two polynomials, which we also prove by very elementary methods.

[1]  Peter Scheiblechner,et al.  Counting Irreducible Components of Complex Algebraic Varieties , 2010, computational complexity.

[2]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[3]  Noaï Fitchas,et al.  Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .

[4]  Peter Scheiblechner,et al.  On the complexity of counting components of algebraic varieties , 2009, J. Symb. Comput..

[5]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[6]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[7]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[8]  Grégoire Lecerf Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions , 2000, ISSAC.

[9]  Michael Willett,et al.  Factoring Polynomials over a Finite Field , 1978 .

[10]  I. Shafarevich Basic algebraic geometry , 1974 .

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  Arjeh M. Cohen,et al.  Some tapas of computer algebra , 1999, Algorithms and computation in mathematics.

[13]  Peter Bürgisser,et al.  Variations by complexity theorists on three themes of Euler , Bézout , Betti , and Poincaré , 2004 .

[14]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[15]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[16]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[17]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[18]  Felipe Cucker,et al.  Counting complexity classes for numeric computations II: algebraic and semialgebraic sets , 2003, STOC '04.

[19]  A generalization of Stickelberger’s theorem☆ , 2008 .

[20]  Shuhong Gao,et al.  Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..

[21]  Peter Scheiblechner,et al.  Differential forms in computational algebraic geometry , 2007, ISSAC '07.

[22]  José Maria Turull Torres,et al.  The space complexity of elimination theory: upper bounds , 1997 .

[23]  Zbigniew Jelonek,et al.  On the effective Nullstellensatz , 2005 .

[24]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[25]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[26]  Hans Cuypers,et al.  Some Tapas of Computer Algebra with Algorithms and Computations in Mathematics , 1998 .

[27]  John F. Canny,et al.  Factoring Rational Polynomials Over the Complex Numbers , 1993, SIAM J. Comput..

[28]  Grégoire Lecerf,et al.  Lifting and recombination techniques for absolute factorization , 2007, J. Complex..

[29]  G. A. Dirac,et al.  Moderne Algebra. I , 1951 .

[30]  Juan Sabia,et al.  Effective equidimensional decomposition of affine varieties , 2002 .

[31]  Ágnes Szántó,et al.  Complexity of the Wu-Ritt decomposition , 1997, PASCO '97.

[32]  Peter Scheiblechner,et al.  On the Complexity of Counting Irreducible Components and Computing Betti Numbers of Algebraic Varieties , 2007 .

[33]  A. Galligo,et al.  Four lectures on polynomial absolute factorization , 2005 .

[34]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[35]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[36]  Agnes Szanto,et al.  Computation with polynomial systems , 1999 .

[37]  Joos Heintz,et al.  Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .

[38]  Peter Scheiblechner,et al.  On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety , 2007, J. Complex..

[39]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[40]  Teresa Krick,et al.  The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..