On a generalization of Stickelberger's Theorem
暂无分享,去创建一个
[1] Peter Scheiblechner,et al. Counting Irreducible Components of Complex Algebraic Varieties , 2010, computational complexity.
[2] Joos Heintz,et al. Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.
[3] Noaï Fitchas,et al. Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .
[4] Peter Scheiblechner,et al. On the complexity of counting components of algebraic varieties , 2009, J. Symb. Comput..
[5] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[6] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[7] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[8] Grégoire Lecerf. Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions , 2000, ISSAC.
[9] Michael Willett,et al. Factoring Polynomials over a Finite Field , 1978 .
[10] I. Shafarevich. Basic algebraic geometry , 1974 .
[11] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[12] Arjeh M. Cohen,et al. Some tapas of computer algebra , 1999, Algorithms and computation in mathematics.
[13] Peter Bürgisser,et al. Variations by complexity theorists on three themes of Euler , Bézout , Betti , and Poincaré , 2004 .
[14] D. Mumford. Algebraic Geometry I: Complex Projective Varieties , 1981 .
[15] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[16] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[17] Joachim von zur Gathen,et al. Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..
[18] Felipe Cucker,et al. Counting complexity classes for numeric computations II: algebraic and semialgebraic sets , 2003, STOC '04.
[19] A generalization of Stickelberger’s theorem☆ , 2008 .
[20] Shuhong Gao,et al. Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..
[21] Peter Scheiblechner,et al. Differential forms in computational algebraic geometry , 2007, ISSAC '07.
[22] José Maria Turull Torres,et al. The space complexity of elimination theory: upper bounds , 1997 .
[23] Zbigniew Jelonek,et al. On the effective Nullstellensatz , 2005 .
[24] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..
[25] Erich Kaltofen,et al. Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..
[26] Hans Cuypers,et al. Some Tapas of Computer Algebra with Algorithms and Computations in Mathematics , 1998 .
[27] John F. Canny,et al. Factoring Rational Polynomials Over the Complex Numbers , 1993, SIAM J. Comput..
[28] Grégoire Lecerf,et al. Lifting and recombination techniques for absolute factorization , 2007, J. Complex..
[29] G. A. Dirac,et al. Moderne Algebra. I , 1951 .
[30] Juan Sabia,et al. Effective equidimensional decomposition of affine varieties , 2002 .
[31] Ágnes Szántó,et al. Complexity of the Wu-Ritt decomposition , 1997, PASCO '97.
[32] Peter Scheiblechner,et al. On the Complexity of Counting Irreducible Components and Computing Betti Numbers of Algebraic Varieties , 2007 .
[33] A. Galligo,et al. Four lectures on polynomial absolute factorization , 2005 .
[34] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[35] A. Chistov,et al. Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .
[36] Agnes Szanto,et al. Computation with polynomial systems , 1999 .
[37] Joos Heintz,et al. Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .
[38] Peter Scheiblechner,et al. On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety , 2007, J. Complex..
[39] Grégoire Lecerf,et al. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..
[40] Teresa Krick,et al. The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..