Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox

Nature has developed protein-based adhesives whose underwater performance has attracted much research attention over the last few decades. The adhesive proteins are rich in catechols combined with amphiphilic and ionic features. This combination of features constitutes a supramolecular toolbox, to provide stimuli-responsive processing of the adhesive, to secure strong adhesion to a variety of surfaces, and to control the cohesive properties of the material. Here, the versatile interactions used in adhesives secreted by sandcastle worms and mussels are explored. These biological principles are then put in a broader perspective, and synthetic adhesive systems that are based on different types of supramolecular interactions are summarized. The variety and combinations of interactions that can be used in the design of new adhesive systems are highlighted.

[1]  Youbing Mu,et al.  A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. , 2015, Chemical communications.

[2]  Hongbo Zeng,et al.  Adhesion of mussel foot proteins to different substrate surfaces , 2013, Journal of The Royal Society Interface.

[3]  C. Jérôme,et al.  Catechols as versatile platforms in polymer chemistry , 2013 .

[4]  J. Israelachvili,et al.  α,β-Dehydro-Dopa: A Hidden Participant in Mussel Adhesion. , 2016, Biochemistry.

[5]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[6]  B Kollbe Ahn,et al.  Perspectives on Mussel-Inspired Wet Adhesion. , 2017, Journal of the American Chemical Society.

[7]  Y. Takashima,et al.  Macroscopic self-assembly based on complementary interactions between nucleobase pairs. , 2015, Chemistry.

[8]  Akira Harada,et al.  Reversible self-assembly of gels through metal-ligand interactions , 2013, Scientific Reports.

[9]  Soong Ho Um,et al.  Tissue Adhesive Catechol‐Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy , 2015 .

[10]  J. Israelachvili,et al.  Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. , 2012, Biochemistry.

[11]  O. Scherman,et al.  Hybrid organic–inorganic supramolecular hydrogel reinforced with CePO4 nanowires , 2016 .

[12]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[13]  E. Kramer,et al.  Adhesion and Surface Interactions of a Self‐Healing Polymer with Multiple Hydrogen‐Bonding Groups , 2014 .

[14]  J. Herbert Waite,et al.  Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein. , 2013, Journal of the American Chemical Society.

[15]  Hongbo Zeng,et al.  Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water , 2010, Proceedings of the National Academy of Sciences.

[16]  Zijian Zheng,et al.  A Transparent, Highly Stretchable, Autonomous Self-Healing Poly(dimethyl siloxane) Elastomer. , 2017, Macromolecular rapid communications.

[17]  Hongbo Zeng,et al.  Marine mussel adhesion and bio-inspired wet adhesives , 2016 .

[18]  Phillip B. Messersmith,et al.  Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics , 2015, Nature materials.

[19]  Jacob N Israelachvili,et al.  The Contribution of DOPA to Substrate–Peptide Adhesion and Internal Cohesion of Mussel‐Inspired Synthetic Peptide Films , 2010, Advanced functional materials.

[20]  B Kollbe Ahn,et al.  Surface-initiated self-healing of polymers in aqueous media. , 2014, Nature materials.

[21]  C. Buckley,et al.  A Thermoreversible Supramolecular Polyurethane with Excellent Healing Ability at 45 °C , 2015 .

[22]  Haeshin Lee,et al.  Enhancement of poly (ethylene glycol) mucoadsorption by biomimetic end group functionalization , 2006, Biointerphases.

[23]  Kyung Min Park,et al.  Supramolecular Cyclodextrin Supplements to Improve the Tissue Adhesion Strength of Gelatin Bioglues. , 2017, ACS macro letters.

[24]  Dusty R Miller,et al.  Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films , 2013, Proceedings of the National Academy of Sciences.

[25]  G. N. Sastry,et al.  Cation-π interaction: its role and relevance in chemistry, biology, and material science. , 2013, Chemical reviews.

[26]  C. Weder,et al.  Epoxy Resin-Inspired Reconfigurable Supramolecular Networks , 2016 .

[27]  Sean C. Smith,et al.  Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study. , 2011, The journal of physical chemistry. B.

[28]  Marleen Kamperman,et al.  Jack of all trades: versatile catechol crosslinking mechanisms. , 2014, Chemical Society reviews.

[29]  H. Yoshioka,et al.  Repeatable adhesion by proton donor-acceptor interaction of polymer brushes , 2017 .

[30]  Y. Takashima,et al.  A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction , 2014, Scientific Reports.

[31]  Feng Zhou,et al.  Bioinspired catecholic chemistry for surface modification. , 2011, Chemical Society reviews.

[32]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[33]  Russell J Stewart,et al.  Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. , 2007, Langmuir.

[34]  Kimoon Kim,et al.  Supramolecular velcro for reversible underwater adhesion. , 2013, Angewandte Chemie.

[35]  L. Burdine,et al.  Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins. , 2006, Journal of the American Chemical Society.

[36]  G. Walker The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus hameri , 1970 .

[37]  Bruce P. Lee,et al.  Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity , 2014, ACS applied materials & interfaces.

[38]  M. Akazome,et al.  CH/π Interactions for Macroscopic Interfacial Adhesion Design. , 2016, ACS macro letters.

[39]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[40]  James D. White,et al.  Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. , 2012, Journal of the American Chemical Society.

[41]  M. C. Stuart,et al.  The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive , 2015 .

[42]  Qian Ma,et al.  Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. , 2015, ACS macro letters.

[43]  Kenneth W. Desmond,et al.  Dynamics of mussel plaque detachment. , 2015, Soft matter.

[44]  R. Stewart,et al.  Cryopreserved human amniotic membrane and a bioinspired underwater adhesive to seal and promote healing of iatrogenic fetal membrane defect sites. , 2015, Placenta.

[45]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[46]  Jian Ping Gong,et al.  Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. , 2013, Nature materials.

[47]  T. Lu,et al.  Strong underwater adhesives made by self-assembling multi-protein nanofibres. , 2014, Nature nanotechnology.

[48]  O. Scherman,et al.  Supramolecular polymeric hydrogels. , 2012, Chemical Society reviews.

[49]  S. Rowan,et al.  Stimuli-Responsive Reversible Two-Level Adhesion from a Structurally Dynamic Shape-Memory Polymer. , 2016, ACS applied materials & interfaces.

[50]  J. Cruickshank,et al.  The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Herbert Waite,et al.  Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica , 2014, PloS one.

[52]  Kent N Bachus,et al.  A water-borne adhesive modeled after the sandcastle glue of P. californica. , 2009, Macromolecular bioscience.

[53]  Maarten M. J. Smulders,et al.  Dynamic covalent polymers , 2016, Journal of polymer science. Part A, Polymer chemistry.

[54]  H. Cha,et al.  The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. , 2010, Biomaterials.

[55]  Qin Zhang,et al.  Bioinspired Adhesive Hydrogel Driven by Adenine and Thymine. , 2017, ACS applied materials & interfaces.

[56]  Jonathan J Wilker,et al.  Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. , 2006, Dalton transactions.

[57]  Bruce P. Lee,et al.  Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein , 2016, Journal of polymer science. Part A, Polymer chemistry.

[58]  Bradley F. Chmelka,et al.  Tuning underwater adhesion with cation-π interactions. , 2017, Nature chemistry.

[59]  A. Hashidzume,et al.  pH-responsive self-assembly by molecular recognition on a macroscopic scale. , 2013, Macromolecular rapid communications.

[60]  Lehui Lu,et al.  Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. , 2014, Chemical reviews.

[61]  C. Weder,et al.  Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties. , 2015, ACS applied materials & interfaces.

[62]  H. Cha,et al.  Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing. , 2015, Biomaterials.

[63]  R. Stewart,et al.  Cement Proteins of the Tube-building Polychaete Phragmatopoma californica* , 2005, Journal of Biological Chemistry.

[64]  Elena E. Dormidontova,et al.  Pressure sensitive adhesives based on interpolymer complexes , 2015 .

[65]  Christopher D. Pritchard,et al.  Painting blood vessels and atherosclerotic plaques with an adhesive drug depot , 2012, Proceedings of the National Academy of Sciences.

[66]  J. Waite,et al.  The microscopic network structure of mussel (Mytilus) adhesive plaques , 2015, Journal of The Royal Society Interface.

[67]  T. Xie,et al.  Macroscopic evidence of strong cation-pi interactions in a synthetic polymer system. , 2010, Chemical communications.

[68]  Jingfeng Jiang,et al.  pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol–Boronate Complexation , 2016, Chemistry of materials : a publication of the American Chemical Society.

[69]  T. Long,et al.  Multiple hydrogen bonding for reversible polymer surface adhesion. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[70]  Elena E. Dormidontova,et al.  Thermo-Switchable Pressure-Sensitive Adhesives Based on Poly(N-vinyl caprolactam) Non-Covalently Cross-Linked by Poly(ethylene glycol) , 2014 .

[71]  R. Stewart,et al.  Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA. , 2013, Biomacromolecules.

[72]  Hui Shao,et al.  Biomimetic Underwater Adhesives with Environmentally Triggered Setting Mechanisms , 2010, Advanced materials.

[73]  Akira Harada,et al.  Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based alpha-cyclodextrin and azobenzene polymers. , 2006, Journal of the American Chemical Society.

[74]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[75]  Kimoon Kim,et al.  Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. , 2015, Chemical Society reviews.

[76]  J. Waite,et al.  Probing the Adhesive Footprints of Mytilus californianus Byssus* , 2006, Journal of Biological Chemistry.

[77]  Akira Harada,et al.  Supramolecular polymeric materials via cyclodextrin-guest interactions. , 2014, Accounts of chemical research.

[78]  R. Stewart,et al.  Fetal membrane patch and biomimetic adhesive coacervates as a sealant for fetoscopic defects. , 2012, Acta biomaterialia.

[79]  H. Redl,et al.  Cyanoacrylate tissue sealant impairs tissue integration of macroporous mesh in experimental hernia repair , 2007, Surgical Endoscopy.

[80]  S. Rowan,et al.  Redox-induced polymerisation/depolymerisation of metallo-supramolecular polymers , 2012 .

[81]  R. Scott,et al.  WOUND COMPLICATIONS ASSOCIATED WITH THE USE OF BOVINE SERUM ALBUMIN‐GLUTARALDEHYDE SURGICAL ADHESIVE IN PEDIATRIC PATIENTS , 2007, Neurosurgery.

[82]  Papov,et al.  海産イガイ,Mytilus edulis(イガイ科)の接着プラーク内のヒドロキシアルギニン含有性ポリフェーノール蛋白質 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1995 .

[83]  Y. Takashima,et al.  Switching of macroscopic molecular recognition selectivity using a mixed solvent system , 2012, Nature Communications.

[84]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[85]  C. Sing,et al.  PRISM-Based Theory of Complex Coacervation: Excluded Volume versus Chain Correlation , 2015 .

[86]  C. Abell,et al.  Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Self‐Recovery , 2017, Advanced materials.

[87]  Christoph Weder,et al.  Optically responsive supramolecular polymer glasses , 2016, Nature Communications.

[88]  J. Waite,et al.  Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus. , 2016, Biochemistry.

[89]  Henrik Birkedal,et al.  Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. , 2014, Journal of materials chemistry. B.

[90]  M. Guo,et al.  Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly(ionic liquid) strips , 2014 .

[91]  F. Roberto,et al.  Understanding Marine Mussel Adhesion , 2007, Marine Biotechnology.

[92]  Hyung Joon Cha,et al.  Practical recombinant hybrid mussel bioadhesive fp-151. , 2007, Biomaterials.

[93]  Hongbo Zeng,et al.  Nanomechanics of cation-π interactions in aqueous solution. , 2013, Angewandte Chemie.

[94]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[95]  Brian P. Frank,et al.  Adhesion of Mytilus edulis Foot Protein 1 on Silica: Ionic Effects on Biofouling , 2002, Biotechnology progress.

[96]  U. Schubert,et al.  Synthesis and characterization of metallo-supramolecular polymers. , 2016, Chemical Society reviews.

[97]  Y. Takashima,et al.  Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition. , 2014, Macromolecular rapid communications.

[98]  N. Holten-Andersen,et al.  Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light. , 2017, Soft matter.

[99]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[100]  C. Roy,et al.  Self‐Adjustable Adhesion of Polyampholyte Hydrogels , 2015, Advanced materials.

[101]  J. Voskuhl,et al.  Supramolecular surface adhesion mediated by azobenzene polymer brushes. , 2016, Chemical communications.

[102]  Russell J Stewart,et al.  Toughened hydrogels inspired by aquatic caddisworm silk. , 2015, Soft matter.

[103]  Y. Yang,et al.  Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material , 2011, Biofouling.

[104]  M. Furutani,et al.  Adhesive Materials Utilizing a Thymine-Adenine Interaction and Thymine Photodimerization. , 2015, ACS macro letters.

[105]  R. Stewart,et al.  Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes) , 2012, Journal of Experimental Biology.

[106]  A. Butler,et al.  Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement , 2015, Science.

[107]  S. Pensec,et al.  Microstructure and Self-Assembly of Supramolecular Polymers Center-Functionalized with Strong Stickers , 2015 .

[108]  Y. Takashima,et al.  A metal–ion-responsive adhesive material via switching of molecular recognition properties , 2014, Nature Communications.

[109]  D. Dougherty The cation-π interaction. , 2013, Accounts of chemical research.

[110]  Qiang Zhao,et al.  Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. , 2016, Nature materials.

[111]  Scott J. Hultgren,et al.  Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation , 2002, Science.

[112]  Hui Shao,et al.  Complex coacervates as a foundation for synthetic underwater adhesives. , 2011, Advances in colloid and interface science.

[113]  T. Springer,et al.  Cation-π interaction regulates ligand-binding affinity and signaling of integrin α4β7 , 2010, Proceedings of the National Academy of Sciences.

[114]  T. Long,et al.  Thermoreversible Poly(alkyl acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding , 2003 .

[115]  Hongbo Zeng,et al.  Cation-π interaction in DOPA-deficient mussel adhesive protein mfp-1. , 2015, Journal of materials chemistry. B.

[116]  Y. Takashima,et al.  Direct covalent bond formation between materials using copper(I)-catalyzed azide alkyne cycloaddition reactions , 2015 .

[117]  N. K. Singha,et al.  "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. , 2009, ACS applied materials & interfaces.

[118]  D. Díaz,et al.  Glass–Metal Adhesive Polymers from Copper(I)‐Catalyzed Azide–Alkyne Cycloaddition , 2017 .

[119]  J. Waite,et al.  Linking Adhesive and Structural Proteins in the Attachment Plaque of Mytilus californianus* , 2006, Journal of Biological Chemistry.

[120]  R. Stewart,et al.  The tube cement of Phragmatopoma californica: a solid foam , 2004, Journal of Experimental Biology.

[121]  C. Verma,et al.  Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins , 2015, Nature Communications.

[122]  S. Moulay Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials , 2014 .

[123]  C. Weder,et al.  Light-induced bonding and debonding with supramolecular adhesives. , 2014, ACS applied materials & interfaces.

[124]  R. Stewart,et al.  Please Scroll down for Article the Journal of Adhesion Glueomics: an Expression Survey of the Adhesive Gland of the Sandcastle Worm Glueomics: an Expression Survey of the Adhesive Gland of the Sandcastle Worm , 2022 .

[125]  S. Pensec,et al.  Combined Effect of Chain Extension and Supramolecular Interactions on Rheological and Adhesive Properties of Acrylic Pressure-Sensitive Adhesives. , 2016, ACS applied materials & interfaces.

[126]  Devin G. Barrett,et al.  Mussel-inspired histidine-based transient network metal coordination hydrogels. , 2013, Macromolecules.

[127]  S. Pensec,et al.  Supramolecular Soft Adhesive Materials , 2010 .

[128]  Oren A Scherman,et al.  Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. , 2012, Journal of the American Chemical Society.

[129]  M. Mehdizadeh,et al.  Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. , 2012, Biomaterials.

[130]  R. Siegel,et al.  Free volume, adhesion, and viscoelastic properties of model nanostructured pressure‐sensitive adhesive based on stoichiometric complex of poly(N‐vinyl pyrrolidone) and poly(ethylene glycol) of disparate chain lengths , 2011 .

[131]  J. Forman,et al.  Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena , 1993 .

[132]  Xi Zhang,et al.  Single-Molecule Force Spectroscopy Quantification of Adhesive Forces in Cucurbit[8]Uril Host-Guest Ternary Complexes. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[133]  J. Herbert Waite,et al.  Mussel adhesion – essential footwork , 2017, Journal of Experimental Biology.

[134]  Robert B. Moore,et al.  Nucleobase Self-Assembly in Supramolecular Adhesives , 2012 .

[135]  J. Gallivan,et al.  A Computational Study of Cation−π Interactions vs Salt Bridges in Aqueous Media: Implications for Protein Engineering , 2000 .

[136]  Y. Takashima,et al.  Adhesion between Semihard Polymer Materials Containing Cyclodextrin and Adamantane Based on Host–Guest Interactions , 2015 .

[137]  P. Woodward,et al.  Facile bisurethane supramolecular polymers containing flexible alicyclic receptor units , 2009 .

[138]  S. Martin,et al.  Surface Structures of 4-Chlorocatechol Adsorbed on Titanium Dioxide , 1996 .

[139]  Hongbo Zeng,et al.  Protein- and Metal-dependent Interactions of a Prominent Protein in Mussel Adhesive Plaques* , 2010, The Journal of Biological Chemistry.

[140]  Janek von Byern,et al.  Biological adhesive systems : from nature to technical and medical application , 2010 .

[141]  Y. Takashima,et al.  Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester , 2013 .

[142]  Youhong Tang,et al.  Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. , 2017, ACS nano.

[143]  J. Israelachvili,et al.  Microphase Behavior and Enhanced Wet-Cohesion of Synthetic Copolyampholytes Inspired by a Mussel Foot Protein. , 2015, Journal of the American Chemical Society.

[144]  Hongbo Zeng,et al.  Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). , 2012, Soft matter.

[145]  Miaoer Yu,et al.  Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins , 1999 .

[146]  J. Herbert Waite,et al.  Mussel protein adhesion depends on thiol-mediated redox modulation , 2011, Nature chemical biology.

[147]  Honglei Guo,et al.  Tough polyion-complex hydrogels from soft to stiff controlled by monomer structure , 2017 .

[148]  M. Furutani,et al.  Pressure‐sensitive adhesive utilizing molecular interactions between thymine and adenine , 2016 .

[149]  J. Israelachvili,et al.  Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. , 2010, Soft matter.

[150]  An Underwater Surface‐Drying Peptide Inspired by a Mussel Adhesive Protein , 2016, Advanced functional materials.

[151]  Akira Harada,et al.  Photoswitchable gel assembly based on molecular recognition , 2012, Nature Communications.

[152]  M. North,et al.  High Strength Underwater Bonding with Polymer Mimics of Mussel Adhesive Proteins. , 2017, ACS applied materials & interfaces.

[153]  N. Zhang,et al.  Base-pairing mediated non-covalent polymers. , 2009, Chemical Society reviews.

[154]  Joshua P. Jones,et al.  Water‐Borne Endovascular Embolics Inspired by the Undersea Adhesive of Marine Sandcastle Worms , 2016, Advanced healthcare materials.

[155]  P. Tresco,et al.  Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. , 2010, Biomaterials.

[156]  R. Stewart,et al.  Multiphase adhesive coacervates inspired by the Sandcastle worm. , 2011, ACS applied materials & interfaces.

[157]  Russell J Stewart,et al.  Natural Underwater Adhesives. , 2011, Journal of polymer science. Part B, Polymer physics.

[158]  Nan Li,et al.  Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Room‐Temperature Self‐Healing , 2017, Advanced materials.

[159]  A. Miserez,et al.  Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue. , 2016, Journal of materials chemistry. B.

[160]  Y. Takashima,et al.  Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules , 2011 .

[161]  C. Siviour,et al.  An adhesive elastomeric supramolecular polyurethane healable at body temperature† †Electronic supplementary information (ESI) available: Synthesis and experimental details, spectroscopic and crystallographic data, binding constant determination, differential scanning calorimetric data, rheological d , 2016, Chemical science.

[162]  Y. Takashima,et al.  Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition. , 2012, ACS macro letters.

[163]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[164]  Yang Liu,et al.  Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. , 2012, Biomaterials.

[165]  M. Dean,et al.  Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication , 2017, Nature Communications.

[166]  Hee Young Yoo,et al.  Salt Triggers the Simple Coacervation of an Underwater Adhesive When Cations Meet Aromatic π Electrons in Seawater. , 2017, ACS nano.

[167]  Y. Takashima,et al.  Redox-responsive macroscopic gel assembly based on discrete dual interactions. , 2014, Angewandte Chemie.

[168]  Bingqiang Li,et al.  A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate–catechol complexation , 2017 .

[169]  Gareth H McKinley,et al.  Metal-coordination: Using one of nature's tricks to control soft material mechanics. , 2014, Journal of materials chemistry. B.

[170]  C. Ober,et al.  Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel , 2015 .

[171]  Henrik Birkedal,et al.  Self-healing mussel-inspired multi-pH-responsive hydrogels. , 2013, Biomacromolecules.

[172]  Russell J. Stewart,et al.  The role of coacervation and phase transitions in the sandcastle worm adhesive system. , 2017, Advances in colloid and interface science.

[173]  J. Waite,et al.  Polyphosphoprotein from the adhesive pads of Mytilus edulis. , 2001, Biochemistry.

[174]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[175]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[176]  H. Birkedal,et al.  Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. , 2016, Chemistry.

[177]  Feng Zhao,et al.  A Moldable Nanocomposite Hydrogel Composed of a Mussel-Inspired Polymer and a Nanosilicate as a Fit-to-Shape Tissue Sealant. , 2017, Angewandte Chemie.

[178]  Patrick G. Lawrence,et al.  Self-assembly of stiff, adhesive and self-healing gels from common polyelectrolytes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[179]  Dusty R. Miller,et al.  Tough coating proteins: subtle sequence variation modulates cohesion. , 2015, Biomacromolecules.

[180]  Peter H. Koenig,et al.  Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films. , 2013, ACS nano.

[181]  T. Xie,et al.  Shape memory- and hydrogen bonding-based strong reversible adhesive system. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[182]  Patrick G. Lawrence,et al.  Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[183]  S. Pensec,et al.  Linear Rheology of Supramolecular Polymers Center-Functionalized with Strong Stickers , 2015 .

[184]  Hongbo Zeng,et al.  Mussel-inspired hydrogels for biomedical and environmental applications , 2015 .

[185]  D. Dougherty Cation-pi interactions involving aromatic amino acids. , 2007, The Journal of nutrition.

[186]  J. Herbert Waite,et al.  Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces. , 2016, Journal of the American Chemical Society.

[187]  E. W. Meijer,et al.  A modular and supramolecular approach to bioactive scaffolds for tissue engineering , 2005, Nature materials.

[188]  L. Brunsveld,et al.  Supramolecular control of cell adhesion via ferrocene-cucurbit[7]uril host-guest binding on gold surfaces. , 2013, Chemical communications.

[189]  Haeshin Lee,et al.  Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. , 2015, Biomaterials.

[190]  Christoph Weder,et al.  Supramolecular polymer adhesives: advanced materials inspired by nature. , 2016, Chemical Society reviews.

[191]  K. Biemann,et al.  Hydroxyarginine-containing Polyphenolic Proteins in the Adhesive Plaques of the Marine Mussel Mytilus edulis(*) , 1995, The Journal of Biological Chemistry.

[192]  Dusty R. Miller,et al.  Intrinsic surface-drying properties of bioadhesive proteins. , 2014, Angewandte Chemie.

[193]  Honglei Guo,et al.  Oppositely Charged Polyelectrolytes Form Tough, Self‐Healing, and Rebuildable Hydrogels , 2015, Advanced materials.

[194]  B Kollbe Ahn,et al.  High-performance mussel-inspired adhesives of reduced complexity , 2015, Nature Communications.

[195]  P. Woodward,et al.  Thermally Responsive Elastomeric Supramolecular Polymers Featuring Flexible Aliphatic Hydrogen-Bonding End-Groups , 2009 .

[196]  Jeong Hyun Seo,et al.  Mussel-mimetic protein-based adhesive hydrogel. , 2014, Biomacromolecules.

[197]  P. Hansma,et al.  The role of calcium and magnesium in the concrete tubes of the sandcastle worm , 2007, Journal of Experimental Biology.

[198]  T. Long,et al.  Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules. , 2002, Journal of the American Chemical Society.

[199]  J. Israelachvili,et al.  A mussel-derived one component adhesive coacervate. , 2014, Acta biomaterialia.

[200]  J. Herbert Waite,et al.  Mussel Adhesion: Finding the Tricks Worth Mimicking , 2005 .