Fiber of Persistent Homology on Morse functions

Let f be a Morse function on a smooth compact manifold M with boundary. The path component PH f (D) containing f of the space of Morse functions giving rise to the same Persistent Homology D = PH(f) is shown to be the same as the orbit of f under pre-composition by isotopies of M , i.e. φ 7→ f ◦ φ. Consequently we derive topological properties of the fiber PH f (D): In particular we compute its homotopy type when M is a compact surface. In the 1dimensional settings where M is the unit interval or the circle we extend the analysis to continuous functions and show that the fibers are made of contractible and circular components respectively.

[1]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[2]  Brittany Terese Fasy,et al.  Moduli spaces of morse functions for persistence , 2019, Journal of Applied and Computational Topology.

[3]  Stephen Smale,et al.  DIFFEOMORPHISMS OF THE 2-SPHERE , 1959 .

[4]  Ulrike Tillmann,et al.  The Fiber of Persistent Homology for simplicial complexes , 2021 .

[5]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[6]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[7]  Numérisation de documents anciens mathématiques Bulletin de la Société Mathématique de France , 1873 .

[8]  Homotopy Types of Stabilizers and Orbits of Morse Functions on Surfaces , 2003, math/0310067.

[9]  J. Cerf Topologie de certains espaces de plongements , 1961 .

[10]  Justin Curry,et al.  The fiber of the persistence map for functions on the interval , 2017, Journal of Applied and Computational Topology.

[11]  J. Cerf La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie , 1970 .

[12]  Konstantin Mischaikow,et al.  Contractibility of a persistence map preimage , 2018, Journal of Applied and Computational Topology.

[13]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[14]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[15]  Konstantin Mischaikow,et al.  Persistent homology with non-contractible preimages , 2021 .

[16]  M. Hamstrom Homotopy in homeomorphism spaces, $TOP$ and $PL$ , 1974 .

[17]  S. A. Barannikov,et al.  The framed Morse complex and its invariants , 1994 .