High-Dimensional Density Estimation for Data Mining Tasks
暂无分享,去创建一个
[1] Lawrence K. Saul,et al. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..
[2] Harrie Hendriks,et al. Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions , 1990 .
[3] Alessandro Rozza,et al. IDEA: Intrinsic Dimension Estimation Algorithm , 2011, ICIAP.
[4] R Hecht-Nielsen,et al. Replicator neural networks for universal optimal source coding. , 1995, Science.
[5] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[6] Mohammed J. Zaki. Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .
[7] Philip S. Yu,et al. Mining Colossal Frequent Patterns by Core Pattern Fusion , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[8] Yoon Tae Kim,et al. Geometric structures arising from kernel density estimation on Riemannian manifolds , 2013, J. Multivar. Anal..
[9] Geoffrey E. Hinton,et al. Reducing the Dimensionality of Data with Neural Networks , 2006, Science.
[10] Hongyuan Zha,et al. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.
[11] Alexander P. Kuleshov,et al. Manifold Learning: Generalization Ability and Tangent Proximity , 2013, Int. J. Softw. Informatics.
[12] Pascal Frossard,et al. Tangent space estimation for smooth embeddings of Riemannian manifolds , 2012 .
[13] Alexander P. Kuleshov,et al. Manifold Learning: Generalization Ability and Tangent Proximity , 2013, Int. J. Softw. Informatics.
[14] Timothy D. Sauer,et al. Density estimation on manifolds with boundary , 2015, Comput. Stat. Data Anal..
[15] Daniela Rodriguez,et al. Locally adaptive density estimation on Riemannian manifolds , 2013 .
[16] Alexander G. Gray,et al. Submanifold density estimation , 2009, NIPS.
[17] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[18] Kristin P. Bennett,et al. Density-based indexing for approximate nearest-neighbor queries , 1999, KDD '99.
[19] Alexander P. Kuleshov,et al. Tangent Bundle Manifold Learning via Grassmann&Stiefel Eigenmaps , 2012, ArXiv.
[20] M. Meilă,et al. Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery , 2013, 1305.7255.
[21] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[22] Daniela Rodriguez,et al. Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results , 2009, Journal of Mathematical Imaging and Vision.
[23] Dimitrios Gunopulos,et al. An Efficient Density-based Approach for Data Mining Tasks , 2004, Knowledge and Information Systems.
[24] Daniel Freedman,et al. Efficient Simplicial Reconstructions of Manifolds from Their Samples , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Hans-Jörg Schek,et al. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.
[26] Bo Zhang,et al. Intrinsic dimension estimation of manifolds by incising balls , 2009, Pattern Recognit..
[27] Charu C. Aggarwal,et al. Data Mining: The Textbook , 2015 .
[28] Daniel D. Lee,et al. Grassmann discriminant analysis: a unifying view on subspace-based learning , 2008, ICML '08.
[29] Ira Assent,et al. DensEst: Density Estimation for Data Mining in High Dimensional Spaces , 2009, SDM.
[30] Larry A. Wasserman,et al. Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..
[31] Paul S. Bradley,et al. Scaling Clustering Algorithms to Large Databases , 1998, KDD.
[32] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[33] Lior Wolf,et al. Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..
[34] Hans-Peter Kriegel,et al. A generic framework for efficient subspace clustering of high-dimensional data , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[35] X. Huo,et al. A Survey of Manifold-Based Learning Methods , 2007 .
[36] Hong Qiao,et al. Intrinsic dimension estimation of data by principal component analysis , 2010, ArXiv.
[37] M. Kramer. Nonlinear principal component analysis using autoassociative neural networks , 1991 .
[38] Yury Yanovich. Asymptotic Properties of Nonparametric Estimation on Manifold , 2017, COPA.
[39] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[40] Xavier Pennec,et al. Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.
[41] Peter J. Bickel,et al. Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.
[42] Liwei Wang,et al. Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition , 2006, Pattern Recognit..
[43] O. Hellwich,et al. A Projection and Density Estimation Method for Knowledge Discovery , 2012, PloS one.
[44] Hyun Suk Park. Asymptotic Behavior of the Kernel Density Estimator from a Geometric Viewpoint , 2012 .
[45] H. Sebastian Seung,et al. The Manifold Ways of Perception , 2000, Science.
[46] Bruno Pelletier. Kernel density estimation on Riemannian manifolds , 2005 .
[47] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[48] Michel Verleysen,et al. Quality assessment of dimensionality reduction: Rank-based criteria , 2009, Neurocomputing.
[49] John M. Lee. Manifolds and Differential Geometry , 2009 .
[50] P. Campadelli,et al. Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework , 2015 .
[51] Y. Yanovich. Asymptotic Properties of Local Sampling on Manifold , 2016 .
[52] T. Wagner,et al. Nonparametric estimates of probability densities , 1975, IEEE Trans. Inf. Theory.
[53] H. Zha,et al. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..
[54] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[55] A. Singer,et al. Vector diffusion maps and the connection Laplacian , 2011, Communications on pure and applied mathematics.
[56] David W. Scott,et al. Multivariate Density Estimation and Visualization , 2012 .