Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits

[1]  Jane E. Carpenter,et al.  Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes , 2019, Nature Genetics.

[2]  Antonio Rausell,et al.  NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selection signals in humans , 2019, Genome Biology.

[3]  Timothy J. Hohman,et al.  Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk , 2019, Nature Genetics.

[4]  Stephanie E. Moser,et al.  Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative , 2017, bioRxiv.

[5]  Martha L. Bulyk,et al.  Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch , 2018, Cell.

[6]  Martin J. Aryee,et al.  Interrogation of human hematopoiesis at single-cell and single-variant resolution , 2018, Nature Genetics.

[7]  James J. Morrow,et al.  Positively selected enhancer elements endow osteosarcoma cells with metastatic competence , 2017, Nature Medicine.

[8]  M. Bulyk,et al.  Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds. , 2017, Cell systems.

[9]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[10]  Jie J. Zheng,et al.  Modulating the wnt signaling pathway with small molecules , 2017, Protein science : a publication of the Protein Society.

[11]  James J. Morrow,et al.  Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome , 2017, Nature Communications.

[12]  Roby Joehanes,et al.  Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies , 2017, Genome Biology.

[13]  Andrew D. Johnson,et al.  Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. , 2017, American journal of human genetics.

[14]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[15]  Jhih-Rong Lin,et al.  Integrated Post-GWAS Analysis Sheds New Light on the Disease Mechanisms of Schizophrenia , 2016, Genetics.

[16]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[17]  Andrew D. Johnson,et al.  Erratum: Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis (American Journal of Human Genetics (2016) 99(2) (481–488)(S0002929716302208)(10.1016/j.ajhg.2016.06.016)) , 2016 .

[18]  Eric S. Lander,et al.  Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms , 2016, Proceedings of the National Academy of Sciences.

[19]  Andrew D. Johnson,et al.  Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis. , 2016, American journal of human genetics.

[20]  Jia Jia,et al.  Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits , 2016, Nature Genetics.

[21]  He Gao,et al.  Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. , 2016, American journal of human genetics.

[22]  Jacob C. Ulirsch,et al.  Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits , 2016, Cell.

[23]  Jacob C. Ulirsch,et al.  Advances in understanding erythropoiesis: evolving perspectives , 2016, British journal of haematology.

[24]  Jaie C. Woodard,et al.  Survey of variation in human transcription factors reveals prevalent DNA binding changes , 2016, Science.

[25]  Peter C. Scacheri,et al.  Mutations in the noncoding genome , 2015, Current opinion in pediatrics.

[26]  S. Edwards,et al.  Long-Range Modulation of PAG1 Expression by 8q21 Allergy Risk Variants. , 2015, American journal of human genetics.

[27]  J. Lupski,et al.  Non-coding genetic variants in human disease. , 2015, Human molecular genetics.

[28]  Z. Yakhini,et al.  Unraveling determinants of transcription factor binding outside the core binding site , 2015, Genome research.

[29]  Charles Y. Lin,et al.  Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. , 2015, Molecular cell.

[30]  Han Xu,et al.  Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. , 2014, American journal of human genetics.

[31]  Martha L. Bulyk,et al.  UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein–DNA interactions , 2014, Nucleic Acids Res..

[32]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[33]  Richard Leslie,et al.  GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database , 2014, Bioinform..

[34]  Y. Ben-David,et al.  The ets transcription factor Fli-1 in development, cancer and disease , 2014, Oncogene.

[35]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[36]  M. Koury Abnormal erythropoiesis and the pathophysiology of chronic anemia. , 2014, Blood reviews.

[37]  A. Papavassiliou,et al.  Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease , 2014, NeuroMolecular Medicine.

[38]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[39]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[40]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[41]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[42]  Nicholas R. Lemoine,et al.  A practical guide for the functional annotation of genetic variations using SNPnexus , 2013, Briefings Bioinform..

[43]  M. Nalls,et al.  Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. , 2013, Human molecular genetics.

[44]  P. Deloukas,et al.  Maps of open chromatin highlight cell type–restricted patterns of regulatory sequence variation at hematological trait loci , 2013, Genome research.

[45]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[46]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[47]  Alexander van Oudenaarden,et al.  Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. , 2012, Genes & development.

[48]  Christian Gieger,et al.  Seventy-five genetic loci influencing the human red blood cell , 2012, Nature.

[49]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[50]  Yukio Nakamura,et al.  Establishment of Immortalized Human Erythroid Progenitor Cell Lines Able to Produce Enucleated Red Blood Cells , 2012, PloS one.

[51]  Nicholas R. Lemoine,et al.  SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update) , 2012, Nucleic Acids Res..

[52]  Joseph B Hiatt,et al.  Massively parallel functional dissection of mammalian enhancers in vivo , 2012, Nature Biotechnology.

[53]  T. Mikkelsen,et al.  Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay , 2012, Nature Biotechnology.

[54]  David A. Orlando,et al.  Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-β Signaling , 2011, Cell.

[55]  George Q. Daley,et al.  Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration , 2011, Cell.

[56]  M. Siatecka,et al.  The multifunctional role of EKLF/KLF1 during erythropoiesis. , 2011, Blood.

[57]  Berthold Göttgens,et al.  Maps of Open Chromatin Guide the Functional Follow-Up of Genome-Wide Association Signals: Application to Hematological Traits , 2011, PLoS genetics.

[58]  Walter Palmas,et al.  Genetic association analysis highlights new loci that modulate hematological trait variation in Caucasians and African Americans , 2011, Human Genetics.

[59]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[60]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[61]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[62]  Christian Gieger,et al.  Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium , 2009, Nature Genetics.

[63]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[64]  Shailaja N Hegde,et al.  Extramedullary erythropoiesis in the adult liver requires BMP-4/Smad5-dependent signaling. , 2009, Experimental hematology.

[65]  K. Doheny,et al.  Genomewide association study for susceptibility genes contributing to familial Parkinson disease , 2009, Human Genetics.

[66]  Arshad Khan,et al.  SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms , 2008, Bioinform..

[67]  J. Hirschhorn,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Tables S1 to S7 References Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-specific Repressor Bcl11a , 2022 .

[68]  L. J. McReynolds,et al.  Regulation of hematopoiesis by the BMP signaling pathway in adult zebrafish. , 2008, Experimental hematology.

[69]  R. Paulson,et al.  BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. , 2008, Developmental biology.

[70]  S. Orkin,et al.  Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. , 2007, Genes & development.

[71]  Qiong Yang,et al.  Evidence for linkage of red blood cell size and count: Genome‐wide scans in the Framingham Heart Study , 2007, American journal of hematology.

[72]  Qiong Yang,et al.  The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. , 2007, American journal of epidemiology.

[73]  O. Doumbo,et al.  X-Linked G6PD Deficiency Protects Hemizygous Males but Not Heterozygous Females against Severe Malaria , 2007, PLoS medicine.

[74]  R. Paulson,et al.  BMP4 and Madh5 regulate the erythroid response to acute anemia. , 2005, Blood.

[75]  R. Schmidt-Ullrich,et al.  Stress and Radiation-Induced Activation of Multiple Intracellular Signaling Pathways1 , 2003, Radiation research.

[76]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[77]  Andrew G. Clark,et al.  Haplotype Diversity and Linkage Disequilibrium at Human G6PD: Recent Origin of Alleles That Confer Malarial Resistance , 2001, Science.

[78]  N. Martin,et al.  Genetic and environmental causes of variation in basal levels of blood cells , 1999, Twin Research.

[79]  S. Orkin,et al.  GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. , 1999, Blood.

[80]  Yoshimasa Nakamura,et al.  Activation of Stress Signaling Pathways by the End Product of Lipid Peroxidation , 1999, The Journal of Biological Chemistry.

[81]  E. Scott,et al.  Role of PU.1 in Hematopoiesis , 1998, Stem cells.

[82]  Takeshi Imamura,et al.  TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4 , 1997 .

[83]  S. Orkin,et al.  Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Kconfab Investigators,et al.  Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. , 2020 .

[85]  D. E. Bauer,et al.  Growing and Genetically Manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) Cell Lines. , 2018, Methods in molecular biology.

[86]  Y. Teo,et al.  Genome-Wide Association Study Meta-Analysis of Long-Term Average Blood Pressure in East Asians , 2017, Circulation. Cardiovascular genetics.

[87]  Andrew D. Johnson,et al.  Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis. , 2016, American journal of human genetics.

[88]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[89]  N. Martin,et al.  Genetic and environmental influences on the size and number of cells in the blood , 1985, Genetic epidemiology.