Light curves of stars and exoplanets: estimating inclination, obliquity and albedo

[Abridged] Distant stars and planets will remain spatially unresolved for the foreseeable future. It is nonetheless possible to infer aspects of their brightness markings and viewing geometries by analyzing disk-integrated rotational and orbital brightness variations. We compute the harmonic lightcurves, F_l^m(t), resulting from spherical harmonic maps of intensity or albedo, Y_l^m(theta,phi), where l and m are the total and longitudinal order. Notably, odd m>1 are present in an inclined lightcurve, but not seen by an equatorial observer. We therefore suggest that the Fourier spectrum of a thermal lightcurve may be sufficient to determine the orbital inclination of non-transiting short-period planets, the rotational inclination of stars and brown dwarfs, and the obliquity of directly imaged planets. In the best-case scenario of a nearly edge-on geometry, measuring the m=3 mode of a star's rotational lightcurve to within a factor of two provides an inclination estimate good to +/- 6 degrees, assuming stars have randomly distributed spots. Alternatively, if stars have brightness maps perfectly symmetric about the equator, their lightcurves will have no m=3 power, regardless of orientation. In general, inclination estimates will remain qualitative until detailed hydrodynamic simulations and/or occultation maps can be used as a calibrator. We further derive harmonic reflected lightcurves for tidally-locked planets; these are higher-order versions of the well-known Lambert phase curve. We show that a non-uniform planet may have an apparent albedo 25% lower than its intrinsic albedo, even if it exhibits precisely Lambertian phase variations. Lastly, we provide low-order analytic expressions for harmonic lightcurves that can be used for fitting observed photometry; as a general rule, edge-on solutions cannot simply be scaled by sin(i) to mimic inclined lightcurves.

[1]  Etienne Artigau,et al.  LARGE-AMPLITUDE VARIATIONS OF AN L/T TRANSITION BROWN DWARF: MULTI-WAVELENGTH OBSERVATIONS OF PATCHY, HIGH-CONTRAST CLOUD FEATURES , 2012, 1201.3403.

[2]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[3]  Drake Deming,et al.  Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets , 2011 .

[4]  R. J. de Kok,et al.  CHARACTERIZING EXOPLANETARY ATMOSPHERES THROUGH INFRARED POLARIMETRY , 2011, 1108.1290.

[5]  J. Winn,et al.  MEASUREMENTS OF STELLAR INCLINATIONS FOR KEPLER PLANET CANDIDATES , 2012, 1401.1229.

[6]  H. N. Russell On the Albedo of the Planets and Their Satellites , 1916 .

[7]  A. Deutsch Harmonic Analysis of Rigidly Rotating AP Stars , 1970 .

[8]  D. Sasselov,et al.  The Differential Rotation of κ1 Ceti as Observed by MOST , 2007, 0704.2204.

[9]  Darren M. Williams,et al.  Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves , 2004 .

[10]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[11]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[12]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[13]  Dorian S. Abbot,et al.  THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING , 2012, 1205.5034.

[14]  Dorian S. Abbot,et al.  A FALSE POSITIVE FOR OCEAN GLINT ON EXOPLANETS: THE LATITUDE–ALBEDO EFFECT , 2012, 1205.1058.

[15]  S. Solanki,et al.  Evolution of the large-scale magnetic field on the solar surface: a parameter study , 2004 .

[16]  Laurent Gizon,et al.  Determining the Inclination of the Rotation Axis of a Sun-like Star , 2003 .

[17]  R. Tousey Optical Problems of the Satellite , 1957 .

[18]  Antonino Francesco Lanza,et al.  Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in , 2008, 0811.0461.

[19]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[20]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[21]  Adam Burrows,et al.  MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS , 2011, 1102.5089.

[22]  A. Burrows,et al.  ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS , 2011, 1112.4476.

[23]  A. Collier Cameron,et al.  Differential rotation and magnetic polarity patterns on AB Doradus , 1997 .

[24]  The University of Tokyo,et al.  GLOBAL MAPPING OF EARTH-LIKE EXOPLANETS FROM SCATTERED LIGHT CURVES , 2010, 1004.5152.

[25]  J. D. Dorren,et al.  A New Formulation of the Starspot Model, and the Consequences of Starspot Structure , 1987 .

[26]  E. Gaidos,et al.  Detecting the glint of starlight on the oceans of distant planets , 2008, 0801.1852.

[27]  H. N. Russell On the light variations of asteroids and satellites , 1906 .

[28]  A. R. DiDonato Recurrence relations for the indefinite integrals of the associated Legendre functions , 1982 .

[29]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[30]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[31]  Nicolas B. Cowan,et al.  DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS , 2013, 1302.0006.

[32]  Yuka Fujii,et al.  MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN–ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS , 2012, 1204.3504.

[33]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[34]  Satoru Fukuda,et al.  COLORS OF A SECOND EARTH. II. EFFECTS OF CLOUDS ON PHOTOMETRIC CHARACTERIZATION OF EARTH-LIKE EXOPLANETS , 2011, 1102.3625.

[35]  A. F. Lanza,et al.  Time evolution and rotation of starspots on CoRoT-2 from the modelling of transit photometry , 2011, 1102.2192.

[36]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[37]  Antonino Francesco Lanza,et al.  Properties of starspots on CoRoT-2 , 2009, 0909.4055.

[38]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[39]  Robert O. Harmon,et al.  Imaging Stellar Surfaces via Matrix Light-Curve Inversion , 1996 .

[40]  J O Hirschfelder,et al.  THE INTEGRAL OF THE ASSOCIATED LEGENDRE FUNCTION. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[41]  John C. Geary,et al.  Alignment of the stellar spin with the orbits of a three-planet system , 2012, Nature.

[42]  S. Aigrain,et al.  Correction to: A simple method to estimate radial velocity variations due to stellar activity using photometry , 2011, Monthly Notices of the Royal Astronomical Society.

[43]  The University of Tokyo,et al.  MAPPING CLOUDS AND TERRAIN OF EARTH-LIKE PLANETS FROM PHOTOMETRIC VARIABILITY: DEMONSTRATION WITH PLANETS IN FACE-ON ORBITS , 2011, 1106.0136.

[44]  David M. Kipping,et al.  An analytic model for rotational modulations in the photometry of spotted stars , 2012, 1209.2985.

[45]  S. Tremaine On the origin of the obliquities of the outer planets , 1991 .

[46]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[47]  David Lafreniere,et al.  PHOTOMETRIC VARIABILITY OF THE T2.5 BROWN DWARF SIMP J013656.5+093347: EVIDENCE FOR EVOLVING WEATHER PATTERNS , 2009, 0906.3514.

[48]  S. Seager,et al.  ALIEN MAPS OF AN OCEAN-BEARING WORLD , 2009, 0905.3742.

[49]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.