SIMULATION OF DNA-NANOTUBE INTERACTIONS

▪ Abstract Carbon nanotubes functionalized with biological molecules (such as protein peptides and nucleic acids) show great potential for application in bioengineering and nanotechnology. Fundamental understanding, description, and regulation of such bio-nano-systems will ultimately lead to a new generation of integrated systems that combine unique properties of the carbon nanotube (CNT) with biological recognition capabilities. In this review, we describe recent advances in understanding the interactions between deoxyribonucleic acids (DNA) and CNT, as well as relevant simulation techniques. We also review progress in simulating DNA noncovalent interactions with CNTs in an aqueous environment. Molecular dynamics simulations indicate that DNA molecules may be encapsulated inside or wrap around CNT owing to van der Waals attraction between DNA and CNT. We focus on the dynamics and energetics of DNA encapsulation inside nanotubes and discuss the mechanism of encapsulation and the effects of nanotube size, ...

[1]  Malcolm L. H. Green,et al.  Bioelectrochemical single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[2]  D. Srivastava,et al.  Branched Carbon Nanotube Junctions Predicted by Computational Nanotechnology and Fabricated through Nanowelding , 2003 .

[3]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[4]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[5]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[6]  O. Zhou,et al.  Self‐Assembly of Carbon Nanotubes , 2002 .

[7]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[8]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[9]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[10]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[11]  Godehard Sutmann,et al.  Classical Molecular Dynamics , 2002 .

[12]  P. Ordejón Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA , 2000 .

[13]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[14]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[15]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[16]  C. Schönenberger,et al.  Interference and Interaction in multi-wall carbon nanotubes , 1999, cond-mat/9905144.

[17]  Yury Gogotsi,et al.  In situ multiphase fluid experiments in hydrothermal carbon nanotubes , 2001 .

[18]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[19]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[20]  A. Turberfield DNA as an engineering material , 2003 .

[21]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[22]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[23]  Markus Brink,et al.  Tuning carbon nanotube band gaps with strain. , 2003, Physical review letters.

[24]  Steven G. Louie,et al.  Broken symmetry and pseudogaps in ropes of carbon nanotubes , 1998, Nature.

[25]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[26]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[27]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[28]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[29]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[30]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[31]  C. Calladine,et al.  Understanding DNA: The Molecule & How It Works , 1992 .

[32]  Marvin L. Cohen,et al.  Nanotubes, nanoscience, and nanotechnology , 2001 .

[33]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[34]  Gilles Charvin,et al.  Stretching of macromolecules and proteins , 2003 .

[35]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[36]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[37]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[38]  P. Ajayan,et al.  Molecular junctions by joining single-walled carbon nanotubes. , 2002, Physical review letters.

[39]  Rashid Bashir,et al.  Invited Review: DNA-mediated artificial nanobiostructures: state of the art and future directions , 2001 .

[40]  Mark A Ratner,et al.  Hole mobility in DNA: effects of static and dynamic structural fluctuations. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[42]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[43]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[44]  Subband Population in a Single-Wall Carbon Nanotube Diode , 1999, cond-mat/9908109.

[45]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[46]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[47]  David Tománek,et al.  Electronic and structural properties of multiwall carbon nanotubes , 1998 .

[48]  Basiuk,et al.  Adsorption Modification of Single-Walled Carbon Nanotubes with Tetraazaannulene Macrocyclic Complexes , 2002 .

[49]  Vladimir A. Basiuk Reactivity of Carboxylic Groups on Armchair and Zigzag Carbon Nanotube Tips: A Theoretical Study of Esterification with Methanol , 2002 .

[50]  W F van Gunsteren,et al.  Molecular mechanics in biology: from structure to function, taking account of solvation. , 1994, Annual review of biophysics and biomolecular structure.

[51]  R. Crooks,et al.  Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. , 2003, Chemical communications.

[52]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[53]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[54]  Madhu Menon,et al.  Various bonding configurations of transition-metal atoms on carbon nanotubes: Their effect on contact resistance , 2000 .

[55]  Chris Dwyer,et al.  DNA-functionalized single-walled carbon nanotubes , 2002 .

[56]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002 .

[57]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[58]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[59]  A. Charlier,et al.  Uniaxial-stress effects on the electronic properties of carbon nanotubes , 1997 .

[60]  O. P. Repnytska,et al.  DNA interaction with single-walled carbon nanotubes: a SEIRA study , 2003 .

[61]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[62]  I. Tinoco Physical chemistry of nucleic acids. , 2002, Annual review of physical chemistry.

[63]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[64]  Bo Jönsson,et al.  A molecular dynamics simulation of a water model with intramolecular degrees of freedom , 1987 .

[65]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[66]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[67]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[68]  Gang Bao,et al.  Mechanics of biomolecules , 2002 .

[69]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[70]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[71]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[72]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[73]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[74]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[75]  M. Anantram,et al.  Environment and structure influence on DNA conduction , 2003 .

[76]  Huajian Gao,et al.  Spontaneous insertion of DNA oligonucleotides into carbon nanotubes , 2003 .

[77]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .

[78]  Jason J. Davis,et al.  The immobilisation of proteins in carbon nanotubes , 1998 .

[79]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[80]  Francesco Luigi Gervasio,et al.  Electronic structure of wet DNA. , 2002, Physical review letters.

[81]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[82]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[83]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[84]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[85]  Louis E. Brus,et al.  Binding of an Anti-Fullerene IgG Monoclonal Antibody to Single Wall Carbon Nanotubes , 2001 .

[86]  Ursula Rothlisberger,et al.  The role and perspective of ab initio molecular dynamics in the study of biological systems. , 2002, Accounts of chemical research.

[87]  Charles M. Lieber,et al.  STM studies of single-walled carbon nanotubes , 2002 .

[88]  G. Almouzni,et al.  Direct Imaging of Single-Molecules: From Dynamics of a Single DNA Chain to the Study of Complex DNA-Protein Interactions , 2001, Science progress.

[89]  L. J. Maher,et al.  DNA bending by asymmetric phosphate neutralization. , 1994, Science.

[90]  H. Dai,et al.  Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. , 2003, Physical review letters.

[91]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[92]  R. Lavery,et al.  DNA: An Extensible Molecule , 1996, Science.

[93]  Adam T Woolley,et al.  DNA-templated nanotube localization. , 2003, Journal of the American Chemical Society.

[94]  Vincent Bayot,et al.  Electrical resistance of a carbon nanotube bundle , 1994 .

[95]  Tersoff Energies of fullerenes. , 1992, Physical review. B, Condensed matter.

[96]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[97]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[98]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[99]  Mauricio Terrones,et al.  Curved nanostructured materials , 2003 .

[100]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[101]  J. Kovac,et al.  Polymer conformational statistics. III. Modified Gaussian models of stiff chains , 1973 .

[102]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[103]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[104]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[105]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[106]  R. O. Jones,et al.  Density functional calculations for polymers and clusters – progress and limitations , 2001 .

[107]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[108]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[109]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[110]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[111]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[112]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[113]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[114]  Sarah E. Baker,et al.  Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization , 2002 .

[115]  J. Geiselmann The role of DNA conformation in transcriptional initiation and activation in Escherichia coli. , 1997, Biological chemistry.

[116]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[117]  Belita Koiller,et al.  Electromechanical effects in carbon nanotubes: Ab initio and analytical tight-binding calculations , 2003 .

[118]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[119]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[120]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[121]  Donald W. Brenner,et al.  Mechanical and Electrical Properties of Nanotubes , 2002 .

[122]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[123]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[124]  C. R. Martin,et al.  The emerging field of nanotube biotechnology , 2003, Nature Reviews Drug Discovery.

[125]  Charles M. Lieber,et al.  Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy , 1998 .