Structural and Conformable Designs for Aqueous Multifunctional Batteries

[1]  Fei Shen,et al.  Multifunctional hybrid interface enables controllable zinc deposition for aqueous Zn-ion batteries , 2022, Journal of Power Sources.

[2]  Li Li,et al.  Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc‐Ion Batteries , 2022, Advanced materials.

[3]  Huamin Zhang,et al.  High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive , 2022, Nano Energy.

[4]  Xulai Yang,et al.  Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage , 2022, Journal of Energy Storage.

[5]  Qigang Han,et al.  Achieving mechanically sturdy properties and high energy density for Zn-ion structural batteries based on carbon-fiber-reinforced composites , 2021, Composites Science and Technology.

[6]  Haishun Du,et al.  Advanced Nanocellulose‐Based Composites for Flexible Functional Energy Storage Devices , 2021, Advanced materials.

[7]  Feng Wu,et al.  Ultrathin Surface Coating of Nitrogen‐Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc‐Ion Batteries , 2021, Advanced materials.

[8]  Man Xie,et al.  Artificial N-doped Graphene Protective Layer Enables Stable Zn Anode for Aqueous Zn-ion Batteries , 2021, ACS Applied Energy Materials.

[9]  Yuan Yang,et al.  Bioinspired, Tree‐Root‐Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties , 2021, Advanced Energy Materials.

[10]  Yuliang Cao,et al.  Design Strategies for High‐Voltage Aqueous Batteries , 2021, Small Structures.

[11]  P. Camanho,et al.  Structural Batteries: A Review , 2021, Molecules.

[12]  G. Lindbergh,et al.  A Structural Battery and its Multifunctional Performance , 2021, Advanced Energy and Sustainability Research.

[13]  M. Srinivasan,et al.  Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery , 2020 .

[14]  Jeffrey W. Long,et al.  High-Performance Structural Batteries , 2020, Joule.

[15]  N. Kotov,et al.  Biomorphic structural batteries for robotics , 2020, Science Robotics.

[16]  W. Xu,et al.  Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zinc‐Ion Batteries: Recent Progress and Future Perspectives , 2020, Advanced Sustainable Systems.

[17]  A. Zarbin,et al.  Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device , 2020, Electrochimica Acta.

[18]  Mietek Jaroniec,et al.  Roadmap for advanced aqueous batteries: From design of materials to applications , 2020, Science Advances.

[19]  M. Srinivasan,et al.  Hydrogen-Bonding Interactions in Hybrid Aqueous/Non-Aqueous Electrolyte Enables Low-Cost and Long-Lifespan Sodium-Ion Storage. , 2020, ACS applied materials & interfaces.

[20]  Yitai Qian,et al.  Rechargeable aqueous hybrid ion batteries: developments and prospects , 2019, Journal of Materials Chemistry A.

[21]  Jun Ding,et al.  3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. , 2019, ACS applied materials & interfaces.

[22]  Bingbing Chen,et al.  “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries , 2019, Nano Energy.

[23]  N. Kotov,et al.  Biomimetic Solid-State Zn2+ Electrolyte for Corrugated Structural Batteries. , 2019, ACS nano.

[24]  John Wang,et al.  3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O2 Batteries , 2018, Advanced Functional Materials.

[25]  G. Cui,et al.  Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries , 2018, Electrochimica Acta.

[26]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[27]  Pu Chen,et al.  Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries , 2017 .

[28]  G. Lindbergh,et al.  Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries , 2017 .

[29]  Ruben-Simon Kühnel,et al.  A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries , 2017 .

[30]  J. Llorca,et al.  Structural composites for multifunctional applications: Current challenges and future trends , 2017, 1703.09917.

[31]  Yancheng Zhang,et al.  Multifunctional structural lithium-ion battery for electric vehicles , 2017 .

[32]  Xuemei Sun,et al.  Smart Electronic Textiles. , 2016, Angewandte Chemie.

[33]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[34]  L. Asp,et al.  Structural power composites , 2014 .

[35]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[36]  Bruce Dunn,et al.  3D Architectured Anodes for Lithium-Ion Microbatteries with Large Areal Capacity , 2014 .

[37]  Lars Wågberg,et al.  Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties , 2013 .

[38]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[39]  M. Wysocki,et al.  Structural batteries made from fibre reinforced composites , 2010 .

[40]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[41]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[42]  Yaoxin Zhang,et al.  Robust, 3D-printed hydratable plastics for effective solar desalination , 2021 .

[43]  Ryan L. Karkkainen,et al.  Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats , 2020 .

[44]  Wei Liu,et al.  Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives , 2017, Advanced materials.