The Contracting Curve Density Algorithm: Fitting Parametric Curve Models to Images Using Local Self-Adapting Separation Criteria

The task of fitting parametric curve models to the boundaries of perceptually meaningful image regions is a key problem in computer vision with numerous applications, such as image segmentation, pose estimation, object tracking, and 3-D reconstruction. In this article, we propose the Contracting Curve Density (CCD) algorithm as a solution to the curve-fitting problem.The CCD algorithm extends the state-of-the-art in two important ways. First, it applies a novel likelihood function for the assessment of a fit between the curve model and the image data. This likelihood function can cope with highly inhomogeneous image regions, because it is formulated in terms of local image statistics. The local image statistics are learned on the fly from the vicinity of the expected curve. They provide therefore locally adapted criteria for separating the adjacent image regions. These local criteria replace often used predefined fixed criteria that rely on homogeneous image regions or specific edge properties. The second contribution is the use of blurred curve models as efficient means for iteratively optimizing the posterior density over possible model parameters. These blurred curve models enable the algorithm to trade-off two conflicting objectives, namely heaving a large area of convergence and achieving high accuracy.We apply the CCD algorithm to several challenging image segmentation and 3-D pose estimation problems. Our experiments with RGB images show that the CCD algorithm achieves a high level of robustness and sub-pixel accuracy even in the presence of severe texture, shading, clutter, partial occlusion, and strong changes of illumination.

[1]  Quang-Tuan Luong,et al.  Color in Computer Vision , 1993, Handbook of Pattern Recognition and Computer Vision.

[2]  Thorsten Schmitt,et al.  From Multiple Images to a Consistent View , 2000, RoboCup.

[3]  D. Lowe Fitting Parameterized 3-D Models to Images , 1989 .

[4]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[5]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[6]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[7]  Andrew Blake,et al.  Caging 2D bodies by 1-parameter two-fingered gripping systems , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[8]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Thorsten Schmitt,et al.  Vision-based localization and data fusion in a system of cooperating mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[10]  Alan L. Yuille,et al.  Statistical Edge Detection: Learning and Evaluating Edge Cues , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[12]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Roberto Manduchi,et al.  Bayesian fusion of color and texture segmentations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Anthony D. Worrall,et al.  Tracking with the EM Contour Algorithm , 2002, ECCV.

[15]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[16]  Robert Hanek Model-Based Image Segmentation Using Local Self-Adapting Separation Criteria , 2001, DAGM-Symposium.

[17]  Christoph Hansen Modellgetriebene Verfolgung formvariabler Objekte in Videobildfolgen , 2002 .

[18]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[19]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[20]  Ping Sheng Huang Automatic gait recognition via statistical approaches for extended template features , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Joachim M. Buhmann,et al.  Combined color and texture segmentation by parametric distributional clustering , 2002, Object recognition supported by user interaction for service robots.

[22]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[23]  David J. Kriegman,et al.  Invariant-Based Recognition of Complex Curved 3D Objects from Image Contours , 1998, Comput. Vis. Image Underst..

[24]  William H. Press,et al.  Numerical recipes in C , 2002 .

[25]  Jitendra Malik,et al.  Color- and texture-based image segmentation using EM and its application to content-based image retrieval , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[26]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[27]  Raj Acharya,et al.  Robust snake model , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[28]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[29]  James S. Duncan,et al.  Game-Theoretic Integration for Image Segmentation , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[31]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[32]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[33]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[34]  Tim D. Jones,et al.  An active contour model for measuring the area of leg ulcers , 2000, IEEE Transactions on Medical Imaging.

[35]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[36]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[37]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[38]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[39]  Michael Beetz,et al.  Cooperative probabilistic state estimation for vision-based autonomous mobile robots , 2002, IEEE Trans. Robotics Autom..

[40]  Majid Mirmehdi,et al.  Segmentation of Color Textures , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[42]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[43]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[44]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[45]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[46]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[47]  Daniel Snow,et al.  Efficient optimization of a deformable template using dynamic programming , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[48]  Carlo Tomasi,et al.  Edge, Junction, and Corner Detection Using Color Distributions , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Nassir Navab,et al.  Fusion of color, shading and boundary information for factory pipe segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[50]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Jake K. Aggarwal,et al.  Human motion analysis: a review , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[52]  Michael Beetz,et al.  Toward RoboCup without Color Labeling , 2002, AI Mag..

[53]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Timothy F. Cootes,et al.  On representing edge structure for model matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[55]  Stefan Lanser,et al.  Modellbasierte Lokalisation gestützt auf monokulare Videobilder , 1997 .

[56]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[57]  Ingemar J. Cox,et al.  "Ratio regions": a technique for image segmentation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[58]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[59]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[60]  A. Pece The Kalman-EM Contour Tracker , 2022 .

[61]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Joachim M. Buhmann,et al.  Parametric Distributional Clustering for Image Segmentation , 2002, ECCV.

[63]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[66]  BennettJesse,et al.  Multispectral Random Field Models for Synthesis and Analysis of Color Images , 1998 .

[67]  Etienne Colle,et al.  A model to image straight line matching method for vision-based indoor mobile robot self-location , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[68]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Carlo Tomasi,et al.  Alpha estimation in natural images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[70]  Mark S. Boddy,et al.  Deliberation Scheduling for Problem Solving in Time-Constrained Environments , 1994, Artif. Intell..

[71]  G. D. Sullivan,et al.  Natural and artificial low-level seeing systems - Visual interpretation of known objects in constrained scenes , 1992 .

[72]  Wolfram Burgard,et al.  Monte Carlo Localization with Mixture Proposal Distribution , 2000, AAAI/IAAI.

[73]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[74]  Robert Hanek The contracting curve density algorithm and its application to model-based image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[75]  Alireza Khotanzad,et al.  Multispectral Random Field Models for Synthesis and Analysis of Color Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  Radu Horaud,et al.  Object pose from 2-D to 3-D point and line correspondences , 1995, International Journal of Computer Vision.

[77]  Carsten Steger,et al.  Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition , 2001, DAGM-Symposium.

[78]  Stan Sclaroff,et al.  Deformable shape detection and description via model-based region grouping , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[79]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Hans-Hellmut Nagel,et al.  3D pose estimation by fitting image gradients directly to polyhedral models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[81]  Marie-Pierre Jolly,et al.  Tracking Deformable Templates Using a Shortest Path Algorithm , 2001, Comput. Vis. Image Underst..

[82]  Michael Beetz,et al.  Fast image-based object localization in natural scenes , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Andrew Blake,et al.  Error-tolerant visual planning of planar grasp , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[84]  Nicholas Ayache,et al.  Features extraction and analysis methods for sequences of ultrasound Images , 1992, Image Vis. Comput..

[85]  Jean Ponce,et al.  Automatic Model Construction and Pose Estimation From Photographs Using Triangular Splines , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Alex Pentland,et al.  Visually Controlled Graphics , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[88]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  D. Cremers,et al.  Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[90]  Heinrich Niemann Pattern Analysis and Understanding , 1990 .

[91]  C. Steger SUBPIXEL-PRECISE EXTRACTION OF LINES AND EDGES , 2000 .

[92]  Nicholas Ayache,et al.  Features extraction and analysis methods for sequences of ultrasound Images , 1992, Image Vis. Comput..

[93]  Dimitris N. Metaxas,et al.  Image segmentation based on the integration of pixel affinity and deformable models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[94]  Y. Bar-Shalom Tracking and data association , 1988 .

[95]  Anil K. Jain,et al.  Object Tracking Using Deformable Templates , 1998, ICCV.

[96]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[97]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[98]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[99]  Michael Werman,et al.  A Bayesian Method for Fitting Parametric and Nonparametric Models to Noisy Data , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[101]  Michael J. Black Robust incremental optical flow , 1992 .

[102]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[103]  Nassir Navab,et al.  Yet another method for pose estimation: A probabilistic approach using points, lines, and cylinders , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[104]  Jitendra Malik,et al.  Textons, contours and regions: cue integration in image segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[105]  Luc Robert Camera Calibration without Feature Extraction , 1996, Comput. Vis. Image Underst..

[106]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[107]  Ken Shoemake,et al.  Euler Angle Conversion , 1994, Graphics Gems.

[108]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[109]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Markus Ulrich,et al.  Real-time object recognition using a modified generalized Hough transform , 2003, Pattern Recognit..

[111]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[112]  Pierluigi Crescenzi,et al.  Parallel Simulated Annealing for Shape Detection , 1995, Comput. Vis. Image Underst..

[113]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[114]  R. Chellappa Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing , 1989 .

[115]  Daniel P. Huttenlocher,et al.  Image segmentation using local variation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[116]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[117]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[118]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[119]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[120]  Hayit Greenspan,et al.  Color- and Texture-based Image Segmentation Using the Expectation-Maximization Algorithm and its Application to Content-Based Image Retrieval. , 1998, ICCV 1998.

[121]  Hiroshi Murase,et al.  Parametric Feature Detection , 1996, International Journal of Computer Vision.

[122]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[124]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[125]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[126]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Stan Sclaroff,et al.  Corrections to 'Deformable Shape Detection and Description via Model-Based Region Grouping' , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[128]  Stan Sclaroff,et al.  Deformable Shape Detection and Description via Model-Based Region Grouping , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[130]  Timothy F. Cootes,et al.  Building and using flexible models incorporating grey-level information , 1993, 1993 (4th) International Conference on Computer Vision.