Some classes of complete permutation polynomials over $\mathbb{F}_q $

AbstractBy using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where $d = \frac{{p^{4k} - 1}} {{p^k - 1}} + 1$ and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work.

[1]  Michael E. Zieve Permutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares , 2013, ArXiv.

[2]  Tor Helleseth,et al.  Further results on a class of permutation polynomials over finite fields , 2013, Finite Fields Their Appl..

[3]  Dongdai Lin,et al.  On constructing complete permutation polynomials over finite fields of even characteristic , 2013, Discret. Appl. Math..

[4]  José E. Marcos,et al.  Specific permutation polynomials over finite fields , 2008, Finite Fields Their Appl..

[5]  Tor Helleseth,et al.  Some classes of monomial complete permutation polynomials over finite fields of characteristic two , 2014, Finite Fields Their Appl..

[6]  Lei Hu,et al.  A Class of Binomial Permutation Polynomials , 2013, ArXiv.

[7]  Harald Niederreiter,et al.  Dickson Polynomials Over Finite Fields and Complete Mappings , 1987, Canadian Mathematical Bulletin.

[8]  Lei Hu,et al.  Several classes of complete permutation polynomials , 2014, Finite Fields Their Appl..

[9]  Yann Laigle-Chapuy,et al.  Permutation polynomials and applications to coding theory , 2007, Finite Fields Their Appl..

[10]  Michael E. Zieve Some families of permutation polynomials over finite fields , 2007, 0707.1111.

[11]  Tor Helleseth,et al.  On the Walsh Transform of a Class of Functions From Niho Exponents , 2013, IEEE Transactions on Information Theory.

[12]  Huanguo Zhang,et al.  Complete Mapping Polynomials over Finite Field F16 , 2007, WAIFI.

[13]  H. Niederreiter,et al.  Complete mappings of finite fields , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[14]  Enes Pasalic,et al.  A note on complete polynomials over finite fields and their applications in cryptography , 2014, Finite Fields Their Appl..

[15]  Pascale Charpin,et al.  Cubic Monomial Bent Functions: A Subclass of M , 2008, SIAM J. Discret. Math..

[16]  Xiwang Cao,et al.  Complete permutation polynomials over finite fields of odd characteristic , 2013, Finite Fields Their Appl..

[17]  Ian M. Wanless,et al.  Permutation polynomials and orthomorphism polynomials of degree six , 2013, Finite Fields Their Appl..

[18]  Hans Dobbertin,et al.  One-to-One Highly Nonlinear Power Functions on GF(2n) , 1998, Applicable Algebra in Engineering, Communication and Computing.

[19]  Rudolf Lide,et al.  Finite fields , 1983 .

[20]  Yoji Niho Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences , 1972 .

[21]  Marie Henderson,et al.  A note on constructing permutation polynomials , 2009, Finite Fields Their Appl..

[22]  R. Lidl,et al.  When does a polynomial over a finite field permute the elements of the fields , 1988 .

[23]  Qiang Wang,et al.  On constructing permutations of finite fields , 2011, Finite Fields Their Appl..

[24]  Daqing Wan On a problem of Niederreiter and Robinson about finite fields , 1986 .

[25]  Cunsheng Ding,et al.  Explicit classes of permutation polynomials of $$ \mathbb{F}_{3^{3m} } $$ , 2009 .