Four-dimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-ray tomography

[1]  Edgar Dutra Zanotto,et al.  Sintering and rounding kinetics of irregular glass particles , 2018, Journal of the American Ceramic Society.

[2]  C. Rau,et al.  Optimising complementary soft tissue synchrotron X-ray microtomography for reversibly-stained central nervous system samples , 2018, Scientific Reports.

[3]  Or Fleisher,et al.  Volume: 3D reconstruction of history for immersive platforms , 2018, SIGGRAPH Posters.

[4]  Julian R. Jones,et al.  Direct ink writing of highly bioactive glasses , 2018 .

[5]  Rémi Tucoulou,et al.  Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science , 2017 .

[6]  Julian R Jones,et al.  Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. , 2017, Acta biomaterialia.

[7]  Julian R. Jones,et al.  Bioglass and Bioactive Glasses and Their Impact on Healthcare , 2016 .

[8]  J. Mauro,et al.  Bioactive Glass Innovations Through Academia‐Industry Collaboration , 2016 .

[9]  K. Shinagawa,et al.  Sintering force behind the viscous sintering of two particles , 2016 .

[10]  P. Kohut,et al.  Application of hot-stage microscopy to evaluating sample morphology changes on heating , 2016, Journal of Thermal Analysis and Calorimetry.

[11]  Shyamprasad Karagadde,et al.  Time-resolved synchrotron tomographic quantification of deformation during indentation of an equiaxed semi-solid granular alloy , 2016 .

[12]  Wolfgang Arlt,et al.  Qualitative and quantitative insights into multiphase flow in ceramic sponges using X-ray computed tomography , 2015 .

[13]  K. M. Kareh,et al.  Transgranular liquation cracking of grains in the semi-solid state , 2015, Nature Communications.

[14]  Michael Drakopoulos,et al.  A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Olof Svensson,et al.  Data Analysis WorkbeNch (DAWN) , 2015, Journal of synchrotron radiation.

[16]  F. Wakai,et al.  Sintering force behind shape evolution by viscous flow , 2015 .

[17]  L. Salvo,et al.  Hydrodynamic coarsening in phase-separated silicate melts , 2015, 1502.03719.

[18]  J. Rocherullé,et al.  Crystallization behavior of phosphate glasses and its impact on the glasses’ bioactivity , 2015, Journal of Materials Science.

[19]  C. Gourlay,et al.  Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography , 2014, Nature Communications.

[20]  A. M. Deliormanlı,et al.  Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model , 2014, Journal of biomaterials applications.

[21]  Edgar Dutra Zanotto,et al.  Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses , 2013 .

[22]  José M.F. Ferreira,et al.  Synthesis, processing and characterization of a bioactive glass composition for bone regeneration , 2013 .

[23]  Christoph Rau,et al.  Experimental stations at I13 beamline at Diamond Light Source , 2013 .

[24]  I. Steinbach,et al.  Simulation of viscous sintering using the lattice Boltzmann method , 2013 .

[25]  A. M. Deliormanlı In vitro assessment of degradation and bioactivity of robocast bioactive glass scaffolds in simulated body fluid , 2012 .

[26]  M. Hupa,et al.  T–T–T behaviour of bioactive glasses 1–98 and 13–93 , 2012 .

[27]  Andre Phillion,et al.  Quantitative 3D Characterization of Solidification Structure and Defect Evolution in Al Alloys , 2012 .

[28]  M. Hupa,et al.  Crystallization Mechanism of the Bioactive Glasses, 45S5 and S53P4 , 2012 .

[29]  Christoph Rau,et al.  Coherent imaging at the Diamond beamline I13 , 2011 .

[30]  Eduardo Saiz,et al.  Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. , 2011, Materials science & engineering. C, Materials for biological applications.

[31]  Eduardo Saiz,et al.  Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. , 2011, Acta biomaterialia.

[32]  O. Guillon,et al.  Constrained sintering of glass films: Microstructure evolution assessed through synchrotron computed microtomography , 2011 .

[33]  M. Leu,et al.  Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering , 2011, Biofabrication.

[34]  Satadru Kashyap,et al.  Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5 , 2011 .

[35]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[36]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[37]  Delbert E Day,et al.  Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. , 2008, Acta biomaterialia.

[38]  J. Chevalier,et al.  Sintering behaviour of 45S5 bioactive glass. , 2008, Acta biomaterialia.

[39]  M. Rahaman Sintering of Ceramics , 2007 .

[40]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[41]  Dominique Bernard,et al.  Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. , 2007, Biomaterials.

[42]  R. Dashwood,et al.  Pore evolution in a direct chill cast Al-6 wt.% Mg alloy during hot rolling , 2006 .

[43]  K. Powers,et al.  Effect of pH and ionic strength on the reactivity of Bioglass 45S5. , 2005, Biomaterials.

[44]  A. Boccaccini,et al.  Structural analysis of bioactive glasses , 2005 .

[45]  Dominique Bernard,et al.  First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography , 2005 .

[46]  J. Knowles,et al.  Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system. , 2004, Biomaterials.

[47]  J. Knowles Phosphate based glasses for biomedical applications , 2003 .

[48]  Edgar Dutra Zanotto,et al.  Glass sintering with concurrent crystallization , 2002 .

[49]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[50]  J. Hunt,et al.  Hydrogen porosity in directional solidified aluminium-copper alloys:in situ observation , 1997 .

[51]  R. Happonen,et al.  Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. , 1997, Journal of biomedical materials research.

[52]  L L Hench,et al.  Effect of crystallization on apatite-layer formation of bioactive glass 45S5. , 1996, Journal of biomedical materials research.

[53]  E. Liniger,et al.  Packing and Sintering of Two‐Dimensional Structures Made fro Bimodal Particle Size Distributions , 1987 .

[54]  L. C. Jonghe,et al.  Creep and Densification During Sintering of Glass Powder Compacts , 1985 .

[55]  L L Hench,et al.  Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. , 1973, Journal of biomedical materials research.

[56]  I. Cutler,et al.  Effect of Particle Shape on the Kinetics of Sintering of Glass , 1968 .

[57]  W. Kingery,et al.  Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation‐Condensation, and Self‐Diffusion , 1955 .

[58]  H. Wadell,et al.  Volume, Shape, and Roundness of Quartz Particles , 1935, The Journal of Geology.

[59]  J. Shackelford Gas Solubility and Diffusion in Oxide Glasses – Implications for Nuclear Wasteforms☆ , 2014 .

[60]  F. Wakai Mechanics of viscous sintering on the micro- and macro-scale , 2013 .

[61]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[62]  H. Zayed,et al.  Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides , 2013 .

[63]  Q. Fu,et al.  Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. , 2011, Acta biomaterialia.

[64]  M. Hupa,et al.  Factors affecting crystallization of bioactive glasses , 2007 .

[65]  Suk‐Joong L. Kang,et al.  4 – INITIAL STAGE SINTERING , 2005 .

[66]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[67]  Baram,et al.  Crystallization kinetics. , 1994, Physical review. B, Condensed matter.

[68]  P. A. Tick,et al.  Hot stage optical microscopy studies of crystallization in fluoride glass melts , 1992 .

[69]  H. Exner,et al.  The Kinetics of Contact Formation During Sintering by Diffusion Mechanisms , 1990 .

[70]  C. Handwerker,et al.  Sintering of Ceramics , 1989 .

[71]  R. Doremus,et al.  Chapter 17 – Solubility, Permeability, and Diffusion of Gases in Glass , 1986 .

[72]  K. Walker,et al.  Consolidation of Participate Layers in the Fabrication of Optical Fiber Preforms , 1980 .