Mars Express measurements of surface albedo changes over 2004–2010

Abstract The pervasive Mars dust is continually transported between the surface and the atmosphere. When on the surface, dust increases the albedo of darker underlying rocks and regolith, which modifies climate energy balance and must be quantified. Remote observation of surface albedo absolute value and albedo change is however complicated by dust itself when lifted in the atmosphere. Here we present a method to calculate and map the bolometric solar hemispherical albedo of the martian surface using the 2004–2010 OMEGA imaging spectrometer dataset. This method takes into account aerosols radiative transfer, surface photometry, and instrumental issues such as registration differences between visible and near-IR detectors. Resulting albedos are on average 17% higher than previous estimates for bright surfaces while similar for dark surfaces. We observed that surface albedo changes occur mostly during the storm season due to isolated events. The main variations are observed during the 2007 global dust storm and during the following year. A wide variety of change timings are detected such as dust deposited and then cleaned over a martian year, areas modified only during successive global dust storms, and perennial changes over decades. Both similarities and differences with previous global dust storms are observed. While an optically thin layer of bright dust is involved in most changes, this coating turns out to be sufficient to mask underlying mineralogical near-IR spectral signatures. Overall, changes result from apparently erratic events; however, a cyclic evolution emerges for some (but not all) areas over long timescales.

[1]  M. D. Ellehoj,et al.  Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site , 2010 .

[2]  Bruce A. Cantor,et al.  MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .

[3]  M. Richardson,et al.  An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared , 2002 .

[4]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[5]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[6]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[7]  Mars surface phase function constrained by orbital observations , 2012, 1208.4518.

[8]  Jeffrey R. Johnson,et al.  Gone with the wind: Eolian erasure of the Mars Rover tracks , 2010 .

[9]  Jeffrey R. Johnson,et al.  Temporal observations of bright soil exposures at Gusev crater, Mars , 2011 .

[10]  Ashwin R. Vasavada,et al.  Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor , 2006 .

[11]  H. Kieffer Thermal model for analysis of Mars infrared mapping , 2013 .

[12]  M. Richardson,et al.  The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011) , 2015 .

[13]  R. Jaumann,et al.  Mars Express High Resolution Stereo Camera spectrophotometric data: Characteristics and science analysis , 2007 .

[14]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[15]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[16]  Richard W. Zurek,et al.  Interannual variability of planet-encircling dust storms on Mars , 1993 .

[17]  A. McEwen,et al.  Planet-wide sand motion on Mars , 2012 .

[18]  Kenneth S. Edgett,et al.  Mass movement slope streaks imaged by the Mars Orbiter Camera , 2001 .

[19]  Robert B. Leighton,et al.  Mariner 6 and 7 television pictures: preliminary analysis. , 1969, Science.

[20]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method , 2007 .

[21]  Joshua Lederberg,et al.  Variable features on Mars: Preliminary mariner 9 television results , 1972 .

[22]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[23]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[24]  Jean-Pierre Bibring,et al.  Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars , 2007 .

[25]  Stephane Erard,et al.  The 1994–1995 apparition of Mars observed from Pic-du-Midi , 2000 .

[26]  Jeffrey R. Johnson,et al.  Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface , 2014 .

[27]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[28]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[29]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[30]  E. Miner,et al.  Time variability of Martian bolometric albedo , 1981 .

[31]  A. Treiman Geologic settings of Martian gullies: Implications for their origins , 2003 .

[32]  S. Lewis,et al.  Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds , 2013 .

[33]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[34]  Denis Jouglet L' hydratation de la surface de Mars vue par l'imageur spectral OMEGA , 2008 .

[35]  P. Drossart,et al.  Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere , 1995 .

[36]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[37]  W. A. Baum Earth-based observations of Martian albedo changes , 1974 .

[38]  F. El-Baz,et al.  Temporal changes in the Cerberus region of Mars: Mariner 9 and Viking comparisons , 1981 .

[39]  Claus Fröhlich,et al.  Solar radiative output and its variability: evidence and mechanisms , 2004 .

[40]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[41]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[42]  Joshua Lederberg,et al.  Variable features on Mars 2: Mariner 9 global results , 1973 .

[43]  J. Bell,et al.  Near-Infrared Imaging of Mars from HST: Surface Reflectance, Photometric Properties, and Implications for MOLA Data , 1999 .

[44]  Phillip P. Jenkins,et al.  Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder , 2000 .

[45]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[46]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[47]  S. Douté,et al.  Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near‐infrared imaging spectrometer on board Mars Express , 2007 .

[48]  F. Poulet,et al.  OMEGA long wavelength channel: Data reduction during non-nominal stages , 2009 .

[49]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[50]  R. Singer,et al.  Spectral Reflectance Properties of Particulate Weathered Coatings on Rocks: Laboratory Modeling and Applicability to Mars , 1983 .

[51]  M. Wolff,et al.  Aphelion water‐ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express , 2012 .

[52]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[53]  Norbert Schorghofer,et al.  Sporadic formation of slope streaks on Mars , 2011 .

[54]  R. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[55]  Geoffrey A. Landis,et al.  Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .

[56]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[57]  J. Bell,et al.  High spectral resolution UV to near-IR observations of Mars using HST/STIS , 2007 .

[58]  Jean-Pierre Bibring,et al.  Dust aerosols above the south polar cap of Mars as seen by OMEGA , 2008 .

[59]  J. Fernando,et al.  Surface reflectance of Mars observed by CRISM/MRO: 2. Estimation of surface photometric properties in Gusev Crater and Meridiani Planum , 2013, 1303.4549.

[60]  Ronald Greeley,et al.  A Study of Variable Features on Mars During the Viking Primary Mission , 1977 .

[61]  J. Bell,et al.  Global imaging of Mars by Hubble space telescope during the 1995 opposition , 1996 .

[62]  A. Ingersoll,et al.  Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM , 2006 .

[63]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[64]  P. Geissler Three decades of Martian surface changes , 2004 .

[65]  K. Edgett,et al.  Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models , 2006 .

[66]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[67]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[68]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[69]  Jean-Pierre Bibring,et al.  Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits , 2009, 1103.3426.

[70]  S. Squyres,et al.  Martian variable features: New insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit , 2005 .

[71]  David A. Paige,et al.  Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region , 1994 .

[72]  L. Roberts,et al.  Observing the martian surface albedo pattern: Comparing the AEOS and TES data sets , 2005 .

[73]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[74]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[75]  Yves Langevin,et al.  OMEGA/Mars Express: Visual channel performances and data reduction techniques , 2006 .

[76]  Bruce A. Cantor,et al.  Martian dust storms: 1999 Mars Orbiter Camera observations , 2001 .

[77]  Jean-Pierre Bibring,et al.  Iron mineralogy of the surface of Mars from the 1 μm band spectral properties , 2012 .

[78]  C. Capen Martian albedo feature variations with season: Data of 1971 and 1973 , 1976 .

[79]  P. Christensen Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion , 1988 .

[80]  Yves Langevin,et al.  Mars surface thermal inertia and heterogeneities from OMEGA/MEX , 2014 .

[81]  Alfred S. McEwen,et al.  Long-term monitoring of martian gully formation and evolution with MRO/HiRISE , 2015 .

[82]  Alain Soufflot,et al.  The ground calibration setup of OMEGA and VIRTIS experiments: description and performances , 2005 .

[83]  C. Sagan,et al.  Secular changes and dark-area regeneration on Mars , 1967 .

[84]  R. Clancy,et al.  On the origin of perennial water ice at the south pole of Mars: A precession-controlled mechanism? , 2007 .

[85]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .