Ant colony pattern search algorithms for unconstrained and bound constrained optimization

Abstract Ant colony optimization is a class of metaheuristics which succeed in NP-hard combinational optimization problems rather than continuous optimization problems. We present and analyze a class of ant colony algorithms for unconstrained and bound constrained optimization on R n : Ant Colony Pattern Search Algorithms (APSAs). APSAs use the ant colony framework guided by objective function heuristic pheromone to perform local searches, whereas global search is handled by pattern search algorithms. The analysis results of APSAs prove that they have a probabilistic, weak stationary point convergence theory. APSAs present interesting emergent properties as it was shown through some analytical test functions.

[1]  Mauro Birattari,et al.  For a formal foundation of the Ant Programming approach to combinatorial optimization: Part 1: The problem, the representation, and the general solution strategy , 2000 .

[2]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[3]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[4]  Ian C. Parmee,et al.  The Ant Colony Metaphor for Searching Continuous Design Spaces , 1995, Evolutionary Computing, AISB Workshop.

[5]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[6]  Nicolas Monmarché,et al.  On how Pachycondyla apicalis ants suggest a new search algorithm , 2000, Future Gener. Comput. Syst..

[7]  Yuan-Jing Feng,et al.  An immunity-based ant system for continuous space multi-modal function optimization , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[8]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[9]  Sung-Shun Weng,et al.  Mining time series data for segmentation by using Ant Colony Optimization , 2006, Eur. J. Oper. Res..

[10]  Patrick Siarry,et al.  Tabu Search applied to global optimization , 2000, Eur. J. Oper. Res..

[11]  V. K. Jayaraman,et al.  Ant Colony Approach to Continuous Function Optimization , 2000 .

[12]  Marco Laumanns,et al.  Savings based ant colony optimization for the capacitated minimum spanning tree problem , 2006, Comput. Oper. Res..

[13]  William E. Hart,et al.  Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization , 2001, IEEE Trans. Evol. Comput..

[14]  Lei Wang,et al.  Ant System algorithm based Rosenbrock function optimization in multi-dimension space , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[15]  Marco Dorigo,et al.  Ant Colony Optimization and Stochastic Gradient Descent , 2002, Artificial Life.

[16]  J. Dréo,et al.  Continuous interacting ant colony algorithm based on dense heterarchy , 2004, Future Gener. Comput. Syst..

[17]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..

[18]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[19]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[20]  William E. Hart,et al.  A Convergence Analysis of Unconstrained and Bound Constrained Evolutionary Pattern Search , 2001, Evolutionary Computation.

[21]  Angus R. Simpson,et al.  Parametric study for an ant algorithm applied to water distribution system optimization , 2005, IEEE Transactions on Evolutionary Computation.

[22]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..