Structural consequences of the range of the interatomic potential A menagerie of clusters

We have attempted to find the global minima of clusters containing between 20 and 80 atoms bound by the Morse potential, as a function of the range of the interatomic force. The effect of decreasing the range is to destabilize strained structures, and hence the global minimum changes from icosahedral to decahedral to face-centred-cubic as the range is decreased. For N>45, the global minima associated with a long-ranged potential have polytetrahedral structures involving defects called disclination lines. For the larger clusters, the network of disclination lines is disordered and the global minimum has an amorphous structure resembling a liquid. The size evolution of polytetrahedral packings enables us to study the development of bulk liquid structure in finite systems. As many experiments on the structure of clusters only provide indirect information, these results will be very useful in aiding the interpretation of experiment. They also provide candidate structures for theoretical studies using more specific and computationally expensive descriptions of the interatomic interactions. Furthermore, Morse clusters provide a rigorous testing ground for global optimization methods.

[1]  J. Kasper,et al.  COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I. DEFINITIONS AND BASIC PRINCIPLES , 1958 .

[2]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[3]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[4]  G. Cargill Structure of Metallic Alloy Glasses , 1975 .

[5]  Olof Echt,et al.  Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .

[6]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[7]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[8]  J. Farges,et al.  Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 , 1983 .

[9]  D. Nelson Liquids and Glasses in Spaces of Incommensurate Curvature , 1983 .

[10]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[11]  J. Northby,et al.  Structure of Charged Argon Clusters Formed in a Free Jet Expansion , 1984 .

[12]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[13]  Clemenger,et al.  Ellipsoidal shell structure in free-electron metal clusters. , 1985, Physical review. B, Condensed matter.

[14]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[15]  H. C. Andersen,et al.  Icosahedral ordering in the Lennard-Jones liquid and glass. , 1988, Physical review letters.

[16]  J. Doll,et al.  Theoretical studies of the energetics and structures of atomic clusters , 1989 .

[17]  Close-packing structure of small barium clusters. , 1989, Physical review. A, General physics.

[18]  D. Wales,et al.  How the range of pair interactions governs features of multidimensional potentials , 1990 .

[19]  William H. Press,et al.  Numerical recipes , 1990 .

[20]  D. Wales Structural and topological consequences of anisotropic interactions in clusters , 1990 .

[21]  T. P. Martin,et al.  Observation of electronic shells and shells of atoms in large Na clusters , 1990 .

[22]  Frank H. Stillinger,et al.  Cluster optimization simplified by interaction modification , 1990 .

[23]  Olof Echt,et al.  Magic numbers in mass spectra of large van der Waals clusters , 1990 .

[24]  T. P. Martin,et al.  Evidence for icosahedral shell structure in large magnesium clusters , 1991 .

[25]  E. K. Parks,et al.  Icosahedral structure in hydrogenated cobalt and nickel clusters , 1991 .

[26]  T. P. Martin,et al.  Observation of quantum supershells in clusters of sodium atoms , 1991, Nature.

[27]  A. Depristo,et al.  The structure of NiN and PdN clusters: 4≤N≤23 , 1992 .

[28]  D. Wales,et al.  Structure and energetics of model metal clusters , 1992 .

[29]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[30]  J. Doye,et al.  Systematic investigation of the structures and rearrangements of six-atom clusters bound by a model anisotropic potential , 1992 .

[31]  Zimmermann,et al.  Clusters of fullerene molecules. , 1993, Physical review letters.

[32]  R. Poteau,et al.  Structural properties of sodium microclusters (n=4–34) using a Monte Carlo growth method , 1993 .

[33]  Stabilities of large sodium clusters for different atomic arrangements. , 1993, Physical review. B, Condensed matter.

[34]  David J. Wales,et al.  Rearrangements of 55‐atom Lennard‐Jones and (C60)55 clusters , 1994 .

[35]  Kawai,et al.  Packing Transitions in Nanosized Li Clusters. , 1994, Physical review letters.

[36]  E. K. Parks,et al.  The structure of small nickel clusters. I. Ni3–Ni15 , 1994 .

[37]  L. Marks Experimental studies of small particle structures , 1994 .

[38]  M. Broyer,et al.  Evidence for icosahedral atomic shell structure in nickel and cobalt clusters. Comparison with iron clusters , 1994 .

[39]  Daan Frenkel,et al.  Determination of phase diagrams for the hard-core attractive Yukawa system , 1994 .

[40]  Pinto,et al.  Evidence for truncated octahedral structures in supported gold clusters. , 1995, Physical review. B, Condensed matter.

[41]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[42]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[43]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[44]  J. Doye,et al.  Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters , 1995 .

[45]  L. Mei,et al.  Simulation of ground state structure of nickel clusters (n ≤ 40) , 1996 .

[46]  Structures of hard-core Yukawa clusters and the tail-range dependence of the existence of a liquidlike cluster phase: Relevance to the physics of C60. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  J. Doye,et al.  The Structure and Stability of Atomic Liquids: From Clusters to Bulk , 1996, Science.

[48]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[49]  Jonathan P. K. Doye,et al.  On potential energy surfaces and relaxation to the global minimum , 1996 .

[50]  M. Menon,et al.  Tight binding molecular dynamics study of Ni clusters , 1996 .

[51]  Barkema,et al.  Event-Based Relaxation of Continuous Disordered Systems. , 1996, Physical review letters.

[52]  D. T. Mainz Effect of potential energy topography on dynamics and phase behaviour of clusters , 1996 .

[53]  Jonathan P. K. Doye,et al.  The structure of (C60)N clusters , 1996 .

[54]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[55]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[56]  Alonso,et al.  Theoretical study of icosahedral Ni clusters within the embedded-atom method. , 1996, Physical review. B, Condensed matter.

[57]  Bloomfield,et al.  Surface-enhanced magnetism in nickel clusters. , 1996, Physical review letters.

[58]  A. Depristo,et al.  Structures and energetics of Ni24–Ni55 clusters , 1996 .

[59]  Saroj K. Nayak,et al.  Physics of Nickel Clusters: Energetics and Equilibrium Geometries , 1997 .

[60]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[61]  R. Schlögl,et al.  Ligand-stabilized metal clusters - reinvestigation of the structure of "Au₅₅[P(C₆H₅)₃]12Cl₆" , 1997 .

[62]  T. Möller,et al.  Size-dependent K-edge EXAFS study of the structure of free Ar clusters , 1997 .

[63]  G. C. Nieman,et al.  REACTIONS OF NI38 WITH N2, H2, AND CO: CLUSTER STRUCTURE AND ADSORBATE BINDING SITES , 1997 .

[64]  R. Whetten,et al.  Critical sizes in the growth of Au clusters , 1997 .

[65]  A. Dullweber,et al.  Structural predictions for (C60)N clusters with an all-atom potential , 1997 .