Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit

S. Han was supported in part by DMEA. C. P. Yang was supported in part by the National Natural Science Foundation of China under Grant No. 11074062, the Zhejiang Natural Science Foundation under Grant No. Y6100098, the Open Fund from the SKLPS of ECNU, and the funds from Hangzhou Normal University. Q. P. Su was supported by the National Natural Science Foundation of China under Grant No. 11147186. S. B. Zheng was supported by the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

[1]  Holland,et al.  Quantum nondemolition measurements of photon number by atomic beam deflection. , 1991, Physical review letters.

[2]  Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Guang-Can Guo,et al.  Generation of Schrödinger cat states via the Jaynes-Cummings model with large detuning , 1996 .

[4]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[5]  G. Guo,et al.  Preparation of entangled coherent states of the electromagnetic field based on detecting the state of the atom in the Jaynes-Cummings model , 1997 .

[6]  A. Gilchrist,et al.  Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements , 1998 .

[7]  Shi-Biao Zheng A scheme for the generation of multi-mode Schrödinger cat states , 1998 .

[8]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[9]  G. Guo,et al.  Generation of entangled coherent states of three-cavity fields in a network , 1999 .

[10]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[11]  Alexei Gilchrist,et al.  Contradiction of quantum mechanics with local hidden variables for quadrature phase measurements on pair-coherent states and squeezed macroscopic superpositions of coherent states , 1999 .

[12]  Christoph Bruder,et al.  Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island , 2001 .

[13]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[14]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[15]  Chui-Ping Yang,et al.  Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED , 2003, 1403.4037.

[16]  Nguyen Ba An,et al.  Teleportation of coherent-state superpositions within a network , 2003 .

[17]  G. Agarwal,et al.  Strong-driving-assisted multipartite entanglement in cavity QED. , 2002, Physical review letters.

[18]  Communicating Josephson Qubits , 2002, cond-mat/0206586.

[19]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[20]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[21]  A. Zagoskin,et al.  Tunable coupling of superconducting qubits. , 2002, Physical review letters.

[22]  Conditional Synthesis of Entangled Coherent States with Continuous External Pumping in a Dispersive Cavity QED , 2004 .

[23]  J. Cirac,et al.  Discrete entanglement distribution with squeezed light. , 2003, Physical review letters.

[24]  F. Nori,et al.  Generation of nonclassical photon states using a superconducting qubit in a microcavity , 2004, quant-ph/0402189.

[25]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[26]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[27]  Chui-Ping Yang,et al.  Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. , 2004, Physical review letters.

[28]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[29]  X. Zou,et al.  Generation of an entangled coherent state and reconstruction of a two-mode entangled state via resonant interaction , 2005 .

[30]  S M Girvin,et al.  Theory of microwave parametric down-conversion and squeezing using circuit QED. , 2005, Physical review letters.

[31]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[32]  Franco Nori,et al.  Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. , 2005, Physical review letters.

[33]  Entanglement reciprocation between qubits and continuous variables. , 2005, Physical review letters.

[34]  Siyuan Han,et al.  Realization of an n -qubit controlled- U gate with superconducting quantum interference devices or atoms in cavity QED , 2006 .

[35]  M. W. Johnson,et al.  Sign- and magnitude-tunable coupler for superconducting flux qubits , 2006, cond-mat/0608253.

[36]  F. Marquardt Efficient on-chip source of microwave photon pairs in superconducting circuit QED , 2006, cond-mat/0605232.

[37]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[38]  Meihua Chen,et al.  Entangled Coherent States Generation in two Superconducting LC Circuits , 2008 .

[39]  Alexandre Blais,et al.  Nonlinear dispersive regime of cavity QED: The dressed dephasing model , 2008, 0803.0311.

[40]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[41]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[42]  A N Cleland,et al.  Measurement of the decay of Fock states in a superconducting quantum circuit. , 2008, Physical review letters.

[43]  J. Lukens,et al.  Substrate and process dependent losses in superconducting thin film resonators , 2008 .

[44]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[45]  W. Munro,et al.  Quantum repeaters using coherent-state communication , 2008, 0806.1153.

[46]  M. Mariantoni,et al.  Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.

[47]  P. Bertet,et al.  Tunable Resonators for Quantum Circuits , 2007, 0712.0221.

[48]  Franco Nori,et al.  Phase gate of one qubit simultaneously controlling n qubits in a cavity or coupled to a resonator , 2009, 0912.4242.

[49]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[50]  P. Maurer,et al.  Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits , 2008, 0812.2678.

[51]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[52]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[53]  Franco Nori,et al.  Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity , 2009, 1101.0205.

[54]  L. Tornberg,et al.  Proposal for generating and detecting multi-qubit GHZ states in circuit QED , 2009, 0902.0324.

[55]  Ferdinand Helmer,et al.  Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED , 2009, 0902.0341.

[56]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[57]  Quantum information transfer with superconducting flux qubits coupled to a resonator , 2010, 1012.2030.

[58]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[59]  John M. Martinis,et al.  Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits , 2010, 1006.5084.

[60]  Kurt Jacobs,et al.  Arbitrary control of entanglement between two superconducting resonators. , 2010, Physical review letters.

[61]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[62]  S. Filipp,et al.  Cavity quantum electrodynamics with separate photon storage and qubit readout modes. , 2009, Physical review letters.

[63]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[64]  L Frunzio,et al.  High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.

[65]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[66]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[67]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[68]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[69]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[70]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[71]  Erik Lucero,et al.  Photon shell game in three-resonator circuit quantum electrodynamics , 2010, 1011.3080.

[72]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[73]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[74]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[75]  W. Marsden I and J , 2012 .

[76]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[77]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[78]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[79]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.