Approximability of the vertex cover problem in power-law graphs

In this paper we construct an approximation algorithm for the Minimum Vertex Cover (Min-VC) problem with an expected approximation ratio of [email protected](@b)-1-12^@b2^@[email protected](@b-1)@z(@b) for random power-law graphs in the P(@a,@b) model due to Aiello et al. Here @z(@b) is the Riemann zeta function of @b. We obtain this result by combining the Nemhauser and Trotter approach for Min-VC with a new deterministic rounding procedure which achieves an approximation ratio of 32 on a subset of low degree vertices for which the expected contribution to the cost of the associated linear program is sufficiently large.

[1]  Deryk Osthus,et al.  Popularity based random graph models leading to a scale-free degree sequence , 2004, Discret. Math..

[2]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  M. Jovanovi MODELING PEER-TO-PEER NETWORK TOPOLOGIES THROUGH “ SMALL-WORLD ” MODELS AND POWER LAWS , 2001 .

[5]  Michalis Faloutsos,et al.  Power laws and the AS-level internet topology , 2003, TNET.

[6]  My T. Thai,et al.  On the Hardness and Inapproximability of Optimization Problems on Power Law Graphs , 2010, COCOA.

[7]  Amin Saberi,et al.  On certain connectivity properties of the Internet topology , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[8]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[9]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[10]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[11]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[12]  Eli Upfal,et al.  Stochastic models for the Web graph , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[14]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[15]  Christos Gkantsidis,et al.  Conductance and congestion in power law graphs , 2003, SIGMETRICS '03.

[16]  Heejo Lee,et al.  On the effectiveness of route-based packet filtering for distributed DoS attack prevention in power-law internets , 2001, SIGCOMM '01.

[17]  Jon Kleinberg,et al.  The Structure of the Web , 2001, Science.

[18]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[19]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[20]  P. Faloutsos,et al.  Power-Laws and the AS-level Internet , 2003 .

[21]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[22]  Wojciech Szpankowski,et al.  Assessing Significance of Connectivity and Conservation in Protein Interaction Networks , 2006, RECOMB.

[23]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[24]  B. Bollobás The evolution of random graphs , 1984 .

[25]  Christos Faloutsos,et al.  Mobile call graphs: beyond power-law and lognormal distributions , 2008, KDD.

[26]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[27]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[28]  Kihong Park,et al.  On the Hardness of Optimization in Power Law Graphs , 2007, COCOON.

[29]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[30]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[31]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[32]  Aravind Srinivasan,et al.  Structural and algorithmic aspects of massive social networks , 2004, SODA '04.

[33]  Fan Chung Graham,et al.  A Random Graph Model for Power Law Graphs , 2001, Exp. Math..